ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Conformer with Prob-Sparse Attention Mechanism for End-to-EndSpeech Recognition

85   0   0.0 ( 0 )
 نشر من قبل Xiong Wang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

End-to-end models are favored in automatic speech recognition (ASR) because of their simplified system structure and superior performance. Among these models, Transformer and Conformer have achieved state-of-the-art recognition accuracy in which self-attention plays a vital role in capturing important global information. However, the time and memory complexity of self-attention increases squarely with the length of the sentence. In this paper, a prob-sparse self-attention mechanism is introduced into Conformer to sparse the computing process of self-attention in order to accelerate inference speed and reduce space consumption. Specifically, we adopt a Kullback-Leibler divergence based sparsity measurement for each query to decide whether we compute the attention function on this query. By using the prob-sparse attention mechanism, we achieve impressively 8% to 45% inference speed-up and 15% to 45% memory usage reduction of the self-attention module of Conformer Transducer while maintaining the same level of error rate.



قيم البحث

اقرأ أيضاً

111 - Xian Shi , Pan Zhou , Wei Chen 2021
Neural architecture search (NAS) has been successfully applied to tasks like image classification and language modeling for finding efficient high-performance network architectures. In ASR field especially end-to-end ASR, the related research is stil l in its infancy. In this work, we focus on applying NAS on the most popular manually designed model: Conformer, and then propose an efficient ASR model searching method that benefits from the natural advantage of differentiable architecture search (Darts) in reducing computational overheads. We fuse Darts mutator and Conformer blocks to form a complete search space, within which a modified architecture called Darts-Conformer cell is found automatically. The entire searching process on AISHELL-1 dataset costs only 0.7 GPU days. Replacing the Conformer encoder by stacking searched cell, we get an end-to-end ASR model (named as Darts-Conformner) that outperforms the Conformer baseline by 4.7% on the open-source AISHELL-1 dataset. Besides, we verify the transferability of the architecture searched on a small dataset to a larger 2k-hour dataset. To the best of our knowledge, this is the first successful attempt to apply gradient-based architecture search in the attention-based encoder-decoder ASR model.
Recently, streaming end-to-end automatic speech recognition (E2E-ASR) has gained more and more attention. Many efforts have been paid to turn the non-streaming attention-based E2E-ASR system into streaming architecture. In this work, we propose a nov el online E2E-ASR system by using Streaming Chunk-Aware Multihead Attention(SCAMA) and a latency control memory equipped self-attention network (LC-SAN-M). LC-SAN-M uses chunk-level input to control the latency of encoder. As to SCAMA, a jointly trained predictor is used to control the output of encoder when feeding to decoder, which enables decoder to generate output in streaming manner. Experimental results on the open 170-hour AISHELL-1 and an industrial-level 20000-hour Mandarin speech recognition tasks show that our approach can significantly outperform the MoChA-based baseline system under comparable setup. On the AISHELL-1 task, our proposed method achieves a character error rate (CER) of 7.39%, to the best of our knowledge, which is the best published performance for online ASR.
End-to-end speech recognition has become popular in recent years, since it can integrate the acoustic, pronunciation and language models into a single neural network. Among end-to-end approaches, attention-based methods have emerged as being superior . For example, Transformer, which adopts an encoder-decoder architecture. The key improvement introduced by Transformer is the utilization of self-attention instead of recurrent mechanisms, enabling both encoder and decoder to capture long-range dependencies with lower computational complexity.In this work, we propose boosting the self-attention ability with a DFSMN memory block, forming the proposed memory equipped self-attention (SAN-M) mechanism. Theoretical and empirical comparisons have been made to demonstrate the relevancy and complementarity between self-attention and the DFSMN memory block. Furthermore, the proposed SAN-M provides an efficient mechanism to integrate these two modules. We have evaluated our approach on the public AISHELL-1 benchmark and an industrial-level 20,000-hour Mandarin speech recognition task. On both tasks, SAN-M systems achieved much better performance than the self-attention based Transformer baseline system. Specially, it can achieve a CER of 6.46% on the AISHELL-1 task even without using any external LM, comfortably outperforming other state-of-the-art systems.
Speech emotion recognition is a challenging and important research topic that plays a critical role in human-computer interaction. Multimodal inputs can improve the performance as more emotional information is used for recognition. However, existing studies learnt all the information in the sample while only a small portion of it is about emotion. Moreover, under the multimodal framework, the interaction between different modalities is shallow and insufficient. In this paper, a keysparse Transformer is proposed for efficient SER by only focusing on emotion related information. Furthermore, a cascaded cross-attention block, which is specially designed for multimodal framework, is introduced to achieve deep interaction between different modalities. The proposed method is evaluated by IEMOCAP corpus and the experimental results show that the proposed method gives better performance than the state-of-theart approaches.
Dialect identification (DID) is a special case of general language identification (LID), but a more challenging problem due to the linguistic similarity between dialects. In this paper, we propose an end-to-end DID system and a Siamese neural network to extract language embeddings. We use both acoustic and linguistic features for the DID task on the Arabic dialectal speech dataset: Multi-Genre Broadcast 3 (MGB-3). The end-to-end DID system was trained using three kinds of acoustic features: Mel-Frequency Cepstral Coefficients (MFCCs), log Mel-scale Filter Bank energies (FBANK) and spectrogram energies. We also investigated a dataset augmentation approach to achieve robust performance with limited data resources. Our linguistic feature research focused on learning similarities and dissimilarities between dialects using the Siamese network, so that we can reduce feature dimensionality as well as improve DID performance. The best system using a single feature set achieves 73% accuracy, while a fusion system using multiple features yields 78% on the MGB-3 dialect test set consisting of 5 dialects. The experimental results indicate that FBANK features achieve slightly better results than MFCCs. Dataset augmentation via speed perturbation appears to add significant robustness to the system. Although the Siamese network with language embeddings did not achieve as good a result as the end-to-end DID system, the two approaches had good synergy when combined together in a fused system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا