ترغب بنشر مسار تعليمي؟ اضغط هنا

Trilateral Attention Network for Real-time Medical Image Segmentation

283   0   0.0 ( 0 )
 نشر من قبل Ghada Zamzmi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate segmentation of medical images into anatomically meaningful regions is critical for the extraction of quantitative indices or biomarkers. The common pipeline for segmentation comprises regions of interest detection stage and segmentation stage, which are independent of each other and typically performed using separate deep learning networks. The performance of the segmentation stage highly relies on the extracted set of spatial features and the receptive fields. In this work, we propose an end-to-end network, called Trilateral Attention Network (TaNet), for real-time detection and segmentation in medical images. TaNet has a module for region localization, and three segmentation pathways: 1) handcrafted pathway with hand-designed convolutional kernels, 2) detail pathway with regular convolutional kernels, and 3) a global pathway to enlarge the receptive field. The first two pathways encode rich handcrafted and low-level features extracted by hand-designed and regular kernels while the global pathway encodes high-level context information. By jointly training the network for localization and segmentation using different sets of features, TaNet achieved superior performance, in terms of accuracy and speed, when evaluated on an echocardiography dataset for cardiac segmentation. The code and models will be made publicly available in TaNet Github page.



قيم البحث

اقرأ أيضاً

Over the past decade, Deep Convolutional Neural Networks have been widely adopted for medical image segmentation and shown to achieve adequate performance. However, due to the inherent inductive biases present in the convolutional architectures, they lack understanding of long-range dependencies in the image. Recently proposed Transformer-based architectures that leverage self-attention mechanism encode long-range dependencies and learn representations that are highly expressive. This motivates us to explore Transformer-based solutions and study the feasibility of using Transformer-based network architectures for medical image segmentation tasks. Majority of existing Transformer-based network architectures proposed for vision applications require large-scale datasets to train properly. However, compared to the datasets for vision applications, for medical imaging the number of data samples is relatively low, making it difficult to efficiently train transformers for medical applications. To this end, we propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module. Furthermore, to train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance. Specifically, we operate on the whole image and patches to learn global and local features, respectively. The proposed Medical Transformer (MedT) is evaluated on three different medical image segmentation datasets and it is shown that it achieves better performance than the convolutional and other related transformer-based architectures. Code: https://github.com/jeya-maria-jose/Medical-Transformer
112 - Fei Ding , Gang Yang , Jinlu Liu 2019
The medical image is characterized by the inter-class indistinction, high variability, and noise, where the recognition of pixels is challenging. Unlike previous self-attention based methods that capture context information from one level, we reformu late the self-attention mechanism from the view of the high-order graph and propose a novel method, namely Hierarchical Attention Network (HANet), to address the problem of medical image segmentation. Concretely, an HA module embedded in the HANet captures context information from neighbors of multiple levels, where these neighbors are extracted from the high-order graph. In the high-order graph, there will be an edge between two nodes only if the correlation between them is high enough, which naturally reduces the noisy attention information caused by the inter-class indistinction. The proposed HA module is robust to the variance of input and can be flexibly inserted into the existing convolution neural networks. We conduct experiments on three medical image segmentation tasks including optic disc/cup segmentation, blood vessel segmentation, and lung segmentation. Extensive results show our method is more effective and robust than the existing state-of-the-art methods.
Deep learning techniques have successfully been employed in numerous computer vision tasks including image segmentation. The techniques have also been applied to medical image segmentation, one of the most critical tasks in computer-aided diagnosis. Compared with natural images, the medical image is a gray-scale image with low-contrast (even with some invisible parts). Because some organs have similar intensity and texture with neighboring organs, there is usually a need to refine automatic segmentation results. In this paper, we propose an interactive deep refinement framework to improve the traditional semantic segmentation networks such as U-Net and fully convolutional network. In the proposed framework, we added a refinement network to traditional segmentation network to refine the segmentation results.Experimental results with public dataset revealed that the proposed method could achieve higher accuracy than other state-of-the-art methods.
In real-world practice, medical images acquired in different phases possess complementary information, {em e.g.}, radiologists often refer to both arterial and venous scans in order to make the diagnosis. However, in medical image analysis, fusing pr ediction from two phases is often difficult, because (i) there is a domain gap between two phases, and (ii) the semantic labels are not pixel-wise corresponded even for images scanned from the same patient. This paper studies organ segmentation in two-phase CT scans. We propose Phase Collaborative Network (PCN), an end-to-end framework that contains both generative and discriminative modules. PCN can be mathematically explained to formulate phase-to-phase and data-to-label relations jointly. Experiments are performed on a two-phase CT dataset, on which PCN outperforms the baselines working with one-phase data by a large margin, and we empirically verify that the gain comes from inter-phase collaboration. Besides, PCN transfers well to two public single-phase datasets, demonstrating its potential applications.
Deep neural networks have been a prevailing technique in the field of medical image processing. However, the most popular convolutional neural networks (CNNs) based methods for medical image segmentation are imperfect because they model long-range de pendencies by stacking layers or enlarging filters. Transformers and the self-attention mechanism are recently proposed to effectively learn long-range dependencies by modeling all pairs of word-to-word attention regardless of their positions. The idea has also been extended to the computer vision field by creating and treating image patches as embeddings. Considering the computation complexity for whole image self-attention, current transformer-based models settle for a rigid partitioning scheme that potentially loses informative relations. Besides, current medical transformers model global context on full resolution images, leading to unnecessary computation costs. To address these issues, we developed a novel method to integrate multi-scale attention and CNN feature extraction using a pyramidal network architecture, namely Pyramid Medical Transformer (PMTrans). The PMTrans captured multi-range relations by working on multi-resolution images. An adaptive partitioning scheme was implemented to retain informative relations and to access different receptive fields efficiently. Experimental results on three medical image datasets (gland segmentation, MoNuSeg, and HECKTOR datasets) showed that PMTrans outperformed the latest CNN-based and transformer-based models for medical image segmentation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا