ﻻ يوجد ملخص باللغة العربية
Two crucial requirements for a successful adoption of deep learning (DL) in the wild are: (1) robustness to distributional shifts, and (2) model compactness for achieving efficiency. Unfortunately, efforts towards simultaneously achieving Out-of-Distribution (OOD) robustness and extreme model compactness without sacrificing accuracy have mostly been unsuccessful. This raises an important question: Is the inability to create compact, accurate, and robust deep neural networks (CARDs) fundamental? To answer this question, we perform a large-scale analysis for a range of popular model compression techniques which uncovers several intriguing patterns. Notably, in contrast to traditional pruning approaches (e.g., fine tuning and gradual magnitude pruning), we find that lottery ticket-style pruning approaches can surprisingly be used to create high performing CARDs. Specifically, we are able to create extremely compact CARDs that are dramatically more robust than their significantly larger and full-precision counterparts while matching (or beating) their test accuracy, simply by pruning and/or quantizing. To better understand these differences, we perform sensitivity analysis in the Fourier domain for CARDs trained using different data augmentation methods. Motivated by our analysis, we develop a simple domain-adaptive test-time ensembling approach (CARD-Deck) that uses a gating module to dynamically select an appropriate CARD from the CARD-Deck based on their spectral-similarity with test samples. By leveraging complementary frequency biases of different compressed models, the proposed approach builds a winning hand of CARDs that establishes a new state-of-the-art on CIFAR-10-C accuracies (i.e., 96.8% clean and 92.75% robust) with dramatically better memory usage than their non-compressed counterparts. We also present some theoretical evidences supporting our empirical findings.
Accurate state and uncertainty estimation is imperative for mobile robots and self driving vehicles to achieve safe navigation in pedestrian rich environments. A critical component of state and uncertainty estimation for robot navigation is to perfor
Learning with noisy labels is a practically challenging problem in weakly supervised learning. In the existing literature, open-set noises are always considered to be poisonous for generalization, similar to closed-set noises. In this paper, we empir
A deep neural network is a parametrization of a multilayer mapping of signals in terms of many alternatively arranged linear and nonlinear transformations. The linear transformations, which are generally used in the fully connected as well as convolu
Although machine learning models typically experience a drop in performance on out-of-distribution data, accuracies on in- versus out-of-distribution data are widely observed to follow a single linear trend when evaluated across a testbed of models.
Commonly, Deep Neural Networks (DNNs) generalize well on samples drawn from a distribution similar to that of the training set. However, DNNs predictions are brittle and unreliable when the test samples are drawn from a dissimilar distribution. This