ﻻ يوجد ملخص باللغة العربية
Offline Reinforcement Learning (RL) aims to extract near-optimal policies from imperfect offline data without additional environment interactions. Extracting policies from diverse offline datasets has the potential to expand the range of applicability of RL by making the training process safer, faster, and more streamlined. We investigate how to improve the performance of offline RL algorithms, its robustness to the quality of offline data, as well as its generalization capabilities. To this end, we introduce Offline Model-based RL with Adaptive Behavioral Priors (MABE). Our algorithm is based on the finding that dynamics models, which support within-domain generalization, and behavioral priors, which support cross-domain generalization, are complementary. When combined together, they substantially improve the performance and generalization of offline RL policies. In the widely studied D4RL offline RL benchmark, we find that MABE achieves higher average performance compared to prior model-free and model-based algorithms. In experiments that require cross-domain generalization, we find that MABE outperforms prior methods. Our website is available at https://sites.google.com/berkeley.edu/mabe .
Off-policy reinforcement learning algorithms promise to be applicable in settings where only a fixed data-set (batch) of environment interactions is available and no new experience can be acquired. This property makes these algorithms appealing for r
Standard dynamics models for continuous control make use of feedforward computation to predict the conditional distribution of next state and reward given current state and action using a multivariate Gaussian with a diagonal covariance structure. Th
We study offline reinforcement learning (RL), which aims to learn an optimal policy based on a dataset collected a priori. Due to the lack of further interactions with the environment, offline RL suffers from the insufficient coverage of the dataset,
Meta-learning for offline reinforcement learning (OMRL) is an understudied problem with tremendous potential impact by enabling RL algorithms in many real-world applications. A popular solution to the problem is to infer task identity as augmented st
The generalization ability of most meta-reinforcement learning (meta-RL) methods is largely limited to test tasks that are sampled from the same distribution used to sample training tasks. To overcome the limitation, we propose Latent Dynamics Mixtur