ﻻ يوجد ملخص باللغة العربية
In this work, we present an experimental study of nanosecond high-voltage discharges in a pin-to-pin electrode configuration at atmospheric conditions operating in single-pulse mode (no memory effects). Various discharge parameters, including voltage, current, gas density, rotational/vibrational/gas temperature, and electron number density, were measured. Several different measurement techniques were used, including microwave Rayleigh scattering, laser Rayleigh scattering, optical emission spectroscopy enhanced with a nanosecond probing pulse, fast photography, and electrical parameter measurements. Spark and corona discharge regimes were studied with discharge pulse duration of 90 ns and electrode gap sizes ranging from 2 to 10 mm. The spark regime was observed for gaps < 6 mm using discharge pulse energies of 0.6-1 mJ per mm of the gap length. Higher electron number densities, total electron number per gap length, discharge currents, and gas temperatures were observed for smaller electrode gaps and larger pulse energies, reaching maximal values of about 7.5x10^15 cm-3, 3.5x10^11 electrons per mm, 22 A, and 4,000 K (at 10 us after the discharge), respectively, for a 2 mm gap and 1 mJ/mm discharge pulse energy. Initial breakdown was followed by a secondary breakdown occurring about 30-70 ns later and was associated with ignition of a cathode spot and transition of the discharge to cathodic arc. A majority of the discharge pulse energy was deposited into the gas before the secondary breakdown (85-89%). The electron number density after the ns discharge pulse decayed with a characteristic time scale of 150 ns governed by dissociative recombination and electron attachment to oxygen mechanisms. For the corona regime, substantially lower pulse energies (~0.1 mJ/mm), peak conduction current (1-2 A), and electron numbers (3-5x10^10 electrons per mm), and gas temperatures (360 K) were observed.
In this work, the temporal decay of electrons produced by an atmospheric pin-to-pin nanosecond discharge operating in the spark regime was measured via a combination of microwave Rayleigh scattering (MRS) and laser Rayleigh scattering (LRS). Due to t
A pin liquid anode DC discharge is generated in open air without any additional gas feeding to form self-organized patterns (SOPs) on various liquid interfaces. Axially resolved emission spectra of the whole discharge reveal that the self-organized p
The plasma dry reforming reaction of methane with carbon dioxide is investigated in a nanosecond repetitively pulsed discharge, a type of plasma that offers one of the highest non-equilibrium and performance characteristics. The experiments purpose w
Pin-to-liquid discharges are investigated for the activation of liquids dedicated to agriculture applications. They are characterized through their electrical and optical properties, with a particular attention paid to their filaments and self-organi
We propose a mechanism to pin skyrmions in chiral magnets by introducing local maximum of magnetic exchange strength, which can be realized in chiral magnetic thin films by engineering the local density of itinerate electrons. Thus we find a way to a