ﻻ يوجد ملخص باللغة العربية
In this paper, we study the uniqueness of the difference of meromorphic functions. We give a new proof of the following result: Let $f$ be a transcendental meromorphic function of hyper-order less than $1$, let $eta$ be a non-zero complex number, $ngeq1$, an integer, and let $a,b,c$ be three distinct periodic small functions with period $eta$. If $f$ and $Delta_{eta}^{n}f$ share $a,b,c$ CM, then $fequivDelta_{eta}^{n}f$, which using a different method from cite{gkzz}.
If $f$ is an entire function and $a$ is a complex number, $a$ is said to be an asymptotic value of $f$ if there exists a path $gamma$ from $0$ to infinity such that $f(z) - a$ tends to $0$ as $z$ tends to infinity along $gamma$. The Denjoy--Carleman-
This paper establishes a version of Nevanlinna theory based on Jackson difference operator $D_{q}f(z)=frac{f(qz)-f(z)}{qz-z}$ for meromorphic functions of zero order in the complex plane $mathbb{C}$. We give the logarithmic difference lemma, the seco
In this paper, we study about existence and non-existence of finite order transcendental entire solutions of the certain non-linear differential-difference equations. We also study about conjectures posed by Rong et al. and Chen et al.
In this paper we shall consider the assymptotic growth of $|P_n(z)|^{1/k_n}$ where $P_n(z)$ is a sequence of entire functions of genus zero. Our results extend a result of J. Muller and A. Yavrian. We shall prove that if the sequence of entire functi
In this paper we shall consider the growth at infinity of a sequence $(P_n)$ of entire functions of bounded orders. Our results extend the results in cite{trong-tuyen2} for the growth of entire functions of genus zero. Given a sequence of entire func