ﻻ يوجد ملخص باللغة العربية
A memory leak in an application deployed on the cloud can affect the availability and reliability of the application. Therefore, identifying and ultimately resolve it quickly is highly important. However, in the production environment running on the cloud, memory leak detection is a challenge without the knowledge of the application or its internal object allocation details. This paper addresses this challenge of detection of memory leaks in cloud-based infrastructure without having any internal knowledge by introducing two novel machine learning-based algorithms: Linear Backward Regression (LBR) and Precog and, their two variants: Linear Backward Regression with Change Points Detection (LBRCPD) and Precog with Maximum Filteration (PrecogMF). These algorithms only use one metric i.e the systems memory utilization on which the application is deployed for detection of a memory leak. The developed algorithms accuracy was tested on 60 virtual machines manually labeled memory utilization data and it was found that the proposed PrecogMF algorithm achieves the highest accuracy score of 85%. The same algorithm also achieves this by decreasing the overall compute time by 80% when compared to LBRs compute time. The paper also presents the different memory leak patterns found in the various memory leak applications and are further classified into different classes based on their visual representation.
A memory leak in an application deployed on the cloud can affect the availability and reliability of the application. Therefore, to identify and ultimately resolve it quickly is highly important. However, in the production environment running on the
Many IoT systems are data intensive and are for the purpose of monitoring for fault detection and diagnosis of critical systems. A large volume of data steadily come out of a large number of sensors in the monitoring system. Thus, we need to consider
This paper presents a novel application of Genetic Algorithms(GAs) to quantify the performance of Platform as a Service (PaaS), a cloud service model that plays a critical role in both industry and academia. While Cloud benchmarks are not new, in thi
This paper presents results of the ongoing development of the Cloud Services Delivery Infrastructure (CSDI) that provides a basis for infrastructure centric cloud services provisioning, operation and management in multi-cloud multi-provider environme
Gradecast is a simple three-round algorithm presented by Feldman and Micali. The current work presents a very simple algorithm that utilized Gradecast to achieve Byzantine agreement. Two small variations of the presented algorithm lead to improved al