ﻻ يوجد ملخص باللغة العربية
Let $mathscr{T}$ be the regularity structure associated with a given system of singular stochastic PDEs. The paracontrolled representation of the $sf Pi$ map provides a linear parametrization of the nonlinear space of admissible models $sf M=(g,Pi)$ on $mathscr{T}$, in terms of the family of para-remainders used in the representation. We give an explicit description of the action of the most general class of renormalization schemes presently available on the parametrization space of the space of admissible models. The action is particularly simple for renormalization schemes associated with degree preserving preparation maps; the BHZ renormalization scheme has that property.
We show that the Markov semigroups generated by a large class of singular stochastic PDEs satisfy the strong Feller property. These include for example the KPZ equation and the dynamical $Phi^4_3$ model. As a corollary, we prove that the Brownian bri
We develop in this note the tools of regularity structures to deal with singular stochastic PDEs that involve non-translation invariant differential operators. We describe in particular the renormalised equation for a very large class of spacetime dependent renormalization schemes.
We study the dependence of mild solutions to linear stochastic evolution equations on Hilbert space driven by Wiener noise, with drift having linear part of the type $A+varepsilon G$, on the parameter $varepsilon$. In particular, we study the limit a
In this paper we study a stochastic version of an inviscid shell model of turbulence with multiplicative noise. The deterministic counterpart of this model is quite general and includes inviscid GOY and Sabra shell models of turbulence. We prove glob
We consider the asymptotic behavior of the fluctuations for the empirical measures of interacting particle systems with singular kernels. We prove that the sequence of fluctuation processes converges in distribution to a generalized Ornstein-Uhlenbec