ترغب بنشر مسار تعليمي؟ اضغط هنا

$C^3$: Compositional Counterfactual Constrastive Learning for Video-grounded Dialogues

99   0   0.0 ( 0 )
 نشر من قبل Hung Le
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Video-grounded dialogue systems aim to integrate video understanding and dialogue understanding to generate responses that are relevant to both the dialogue and video context. Most existing approaches employ deep learning models and have achieved remarkable performance, given the relatively small datasets available. However, the results are partly accomplished by exploiting biases in the datasets rather than developing multimodal reasoning, resulting in limited generalization. In this paper, we propose a novel approach of Compositional Counterfactual Contrastive Learning ($C^3$) to develop contrastive training between factual and counterfactual samples in video-grounded dialogues. Specifically, we design factual/counterfactual sampling based on the temporal steps in videos and tokens in dialogues and propose contrastive loss functions that exploit object-level or action-level variance. Different from prior approaches, we focus on contrastive hidden state representations among compositional output tokens to optimize the representation space in a generation setting. We achieved promising performance gains on the Audio-Visual Scene-Aware Dialogues (AVSD) benchmark and showed the benefits of our approach in grounding video and dialogue context.



قيم البحث

اقرأ أيضاً

Compared to traditional visual question answering, video-grounded dialogues require additional reasoning over dialogue context to answer questions in a multi-turn setting. Previous approaches to video-grounded dialogues mostly use dialogue context as a simple text input without modelling the inherent information flows at the turn level. In this paper, we propose a novel framework of Reasoning Paths in Dialogue Context (PDC). PDC model discovers information flows among dialogue turns through a semantic graph constructed based on lexical components in each question and answer. PDC model then learns to predict reasoning paths over this semantic graph. Our path prediction model predicts a path from the current turn through past dialogue turns that contain additional visual cues to answer the current question. Our reasoning model sequentially processes both visual and textual information through this reasoning path and the propagated features are used to generate the answer. Our experimental results demonstrate the effectiveness of our method and provide additional insights on how models use semantic dependencies in a dialogue context to retrieve visual cues.
Video-grounded dialogues are very challenging due to (i) the complexity of videos which contain both spatial and temporal variations, and (ii) the complexity of user utterances which query different segments and/or different objects in videos over mu ltiple dialogue turns. However, existing approaches to video-grounded dialogues often focus on superficial temporal-level visual cues, but neglect more fine-grained spatial signals from videos. To address this drawback, we propose Bi-directional Spatio-Temporal Learning (BiST), a vision-language neural framework for high-resolution queries in videos based on textual cues. Specifically, our approach not only exploits both spatial and temporal-level information, but also learns dynamic information diffusion between the two feature spaces through spatial-to-temporal and temporal-to-spatial reasoning. The bidirectional strategy aims to tackle the evolving semantics of user queries in the dialogue setting. The retrieved visual cues are used as contextual information to construct relevant responses to the users. Our empirical results and comprehensive qualitative analysis show that BiST achieves competitive performance and generates reasonable responses on a large-scale AVSD benchmark. We also adapt our BiST models to the Video QA setting, and substantially outperform prior approaches on the TGIF-QA benchmark.
Recent research efforts enable study for natural language grounded navigation in photo-realistic environments, e.g., following natural language instructions or dialog. However, existing methods tend to overfit training data in seen environments and f ail to generalize well in previously unseen environments. To close the gap between seen and unseen environments, we aim at learning a generalized navigation model from two novel perspectives: (1) we introduce a multitask navigation model that can be seamlessly trained on both Vision-Language Navigation (VLN) and Navigation from Dialog History (NDH) tasks, which benefits from richer natural language guidance and effectively transfers knowledge across tasks; (2) we propose to learn environment-agnostic representations for the navigation policy that are invariant among the environments seen during training, thus generalizing better on unseen environments. Extensive experiments show that environment-agnostic multitask learning significantly reduces the performance gap between seen and unseen environments, and the navigation agent trained so outperforms baselines on unseen environments by 16% (relative measure on success rate) on VLN and 120% (goal progress) on NDH. Our submission to the CVDN leaderboard establishes a new state-of-the-art for the NDH task on the holdout test set. Code is available at https://github.com/google-research/valan.
Image captioning models are usually evaluated on their ability to describe a held-out set of images, not on their ability to generalize to unseen concepts. We study the problem of compositional generalization, which measures how well a model composes unseen combinations of concepts when describing images. State-of-the-art image captioning models show poor generalization performance on this task. We propose a multi-task model to address the poor performance, that combines caption generation and image--sentence ranking, and uses a decoding mechanism that re-ranks the captions according their similarity to the image. This model is substantially better at generalizing to unseen combinations of concepts compared to state-of-the-art captioning models.
In this work, we propose an introspection technique for deep neural networks that relies on a generative model to instigate salient editing of the input image for model interpretation. Such modification provides the fundamental interventional operati on that allows us to obtain answers to counterfactual inquiries, i.e., what meaningful change can be made to the input image in order to alter the prediction. We demonstrate how to reveal interesting properties of the given classifiers by utilizing the proposed introspection approach on both the MNIST and the CelebA dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا