ترغب بنشر مسار تعليمي؟ اضغط هنا

JRDB-Act: A Large-scale Multi-modal Dataset for Spatio-temporal Action, Social Group and Activity Detection

219   0   0.0 ( 0 )
 نشر من قبل Mahsa Ehsanpour
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The availability of large-scale video action understanding datasets has facilitated advances in the interpretation of visual scenes containing people. However, learning to recognize human activities in an unconstrained real-world environment, with potentially highly unbalanced and long-tailed distributed data remains a significant challenge, not least owing to the lack of a reflective large-scale dataset. Most existing large-scale datasets are either collected from a specific or constrained environment, e.g. kitchens or rooms, or video sharing platforms such as YouTube. In this paper, we introduce JRDB-Act, a multi-modal dataset, as an extension of the existing JRDB, which is captured by asocial mobile manipulator and reflects a real distribution of human daily life actions in a university campus environment. JRDB-Act has been densely annotated with atomic actions, comprises over 2.8M action labels, constituting a large-scale spatio-temporal action detection dataset. Each human bounding box is labelled with one pose-based action label and multiple (optional) interaction-based action labels. Moreover JRDB-Act comes with social group identification annotations conducive to the task of grouping individuals based on their interactions in the scene to infer their social activities (common activities in each social group).



قيم البحث

اقرأ أيضاً

This paper considers the problem of multi-modal future trajectory forecast with ranking. Here, multi-modality and ranking refer to the multiple plausible path predictions and the confidence in those predictions, respectively. We propose Social-STAGE, Social interaction-aware Spatio-Temporal multi-Attention Graph convolution network with novel Evaluation for multi-modality. Our main contributions include analysis and formulation of multi-modality with ranking using interaction and multi-attention, and introduction of new metrics to evaluate the diversity and associated confidence of multi-modal predictions. We evaluate our approach on existing public datasets ETH and UCY and show that the proposed algorithm outperforms the state of the arts on these datasets.
Spatio-temporal action detection in videos requires localizing the action both spatially and temporally in the form of an action tube. Nowadays, most spatio-temporal action detection datasets (e.g. UCF101-24, AVA, DALY) are annotated with action tube s that contain a single person performing the action, thus the predominant action detection models simply employ a person detection and tracking pipeline for localization. However, when the action is defined as an interaction between multiple objects, such methods may fail since each bounding box in the action tube contains multiple objects instead of one person. In this paper, we study the spatio-temporal action detection problem with multi-object interaction. We introduce a new dataset that is annotated with action tubes containing multi-object interactions. Moreover, we propose an end-to-end spatio-temporal action detection model that performs both spatial and temporal regression simultaneously. Our spatial regression may enclose multiple objects participating in the action. During test time, we simply connect the regressed bounding boxes within the predicted temporal duration using a simple heuristic. We report the baseline results of our proposed model on this new dataset, and also show competitive results on the standard benchmark UCF101-24 using only RGB input.
Multi-modal human action analysis is a critical and attractive research topic. However, the majority of the existing datasets only provide visual modalities (i.e., RGB, depth and skeleton). To make up this, we introduce a new, large-scale EV-Action d ataset in this work, which consists of RGB, depth, electromyography (EMG), and two skeleton modalities. Compared with the conventional datasets, EV-Action dataset has two major improvements: (1) we deploy a motion capturing system to obtain high quality skeleton modality, which provides more comprehensive motion information including skeleton, trajectory, acceleration with higher accuracy, sampling frequency, and more skeleton markers. (2) we introduce an EMG modality which is usually used as an effective indicator in the biomechanics area, also it has yet to be well explored in motion related research. To the best of our knowledge, this is the first action dataset with EMG modality. The details of EV-Action dataset are clarified, meanwhile, a simple yet effective framework for EMG-based action recognition is proposed. Moreover, state-of-the-art baselines are applied to evaluate the effectiveness of all the modalities. The obtained result clearly shows the validity of EMG modality in human action analysis tasks. We hope this dataset can make significant contributions to human motion analysis, computer vision, machine learning, biomechanics, and other interdisciplinary fields.
Vision is the richest and most cost-effective technology for Driver Monitoring Systems (DMS), especially after the recent success of Deep Learning (DL) methods. The lack of sufficiently large and comprehensive datasets is currently a bottleneck for t he progress of DMS development, crucial for the transition of automated driving from SAE Level-2 to SAE Level-3. In this paper, we introduce the Driver Monitoring Dataset (DMD), an extensive dataset which includes real and simulated driving scenarios: distraction, gaze allocation, drowsiness, hands-wheel interaction and context data, in 41 hours of RGB, depth and IR videos from 3 cameras capturing face, body and hands of 37 drivers. A comparison with existing similar datasets is included, which shows the DMD is more extensive, diverse, and multi-purpose. The usage of the DMD is illustrated by extracting a subset of it, the dBehaviourMD dataset, containing 13 distraction activities, prepared to be used in DL training processes. Furthermore, we propose a robust and real-time driver behaviour recognition system targeting a real-world application that can run on cost-efficient CPU-only platforms, based on the dBehaviourMD. Its performance is evaluated with different types of fusion strategies, which all reach enhanced accuracy still providing real-time response.
Group activity recognition aims to understand the activity performed by a group of people. In order to solve it, modeling complex spatio-temporal interactions is the key. Previous methods are limited in reasoning on a predefined graph, which ignores the inherent person-specific interaction context. Moreover, they adopt inference schemes that are computationally expensive and easily result in the over-smoothing problem. In this paper, we manage to achieve spatio-temporal person-specific inferences by proposing Dynamic Inference Network (DIN), which composes of Dynamic Relation (DR) module and Dynamic Walk (DW) module. We firstly propose to initialize interaction fields on a primary spatio-temporal graph. Within each interaction field, we apply DR to predict the relation matrix and DW to predict the dynamic walk offsets in a joint-processing manner, thus forming a person-specific interaction graph. By updating features on the specific graph, a person can possess a global-level interaction field with a local initialization. Experiments indicate both modules effectiveness. Moreover, DIN achieves significant improvement compared to previous state-of-the-art methods on two popular datasets under the same setting, while costing much less computation overhead of the reasoning module.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا