ﻻ يوجد ملخص باللغة العربية
We derive inseparability criteria for the phase space representation of quantum states in terms of variants of Wehrls entropy. In contrast to entropic criteria involving differential entropies of marginal phase space distributions, our criteria are based on the Husimi Q-distribution. This is experimentally accessible through the heterodyne detection scheme, avoiding costly tomographic measurements. We apply our entropic criteria to Gaussian states and show that they imply a pair of second-order criteria for moments. We exemplify the strengths of our entropic approach by considering several classes of non-Gaussian states where second-order criteria fail. We show that our criteria certify entanglement in previously undetectable regions highlighting the strength of using the Husimi Q-distribution for entanglement detection.
We derive several entanglement criteria for bipartite continuous variable quantum systems based on the Shannon entropy. These criteria are more sensitive than those involving only second-order moments, and are equivalent to well-known variance produc
Entanglement criteria for general (pure or mixed) states of systems consisting of two identical fermions are introduced. These criteria are based on appropriate inequalities involving the entropy of the global density matrix describing the total syst
We show that braiding transformation is a natural approach to describe quantum entanglement, by using the unitary braiding operators to realize entanglement swapping and generate the GHZ states as well as the linear cluster states. A Hamiltonian is c
The Wehrl entropy is an entropy associated to the Husimi quasi-probability distribution. We discuss how it can be used to formulate entropic uncertainty relations and for a quantification of entanglement in continuous variables. We show that the Wehr
It has recently been shown that it is possible to represent the complete quantum state of any system as a phase-space quasi-probability distribution (Wigner function) [Phys Rev Lett 117, 180401]. Such functions take the form of expectation values of