ﻻ يوجد ملخص باللغة العربية
Modern hydrodynamical simulations reproduce many properties of the real universe. These simulations model various physical processes, but many of these are included using `subgrid models due to resolution limits. Although different subgrid models have been successful in modelling the effects of supernovae (SNe) feedback on galactic properties, it remains unclear if, and by how much, these differing implementations affect observable halo gas properties. In this work, we use `zoom-in cosmological initial conditions of two volumes selected to resemble the Local Group (LG) evolved with both the Auriga and EAGLE galaxy formation models. While the subgrid physics models in both simulations reproduce realistic stellar components of $L^star$ galaxies, they exhibit different gas properties. Namely, Auriga predicts that the Milky Way (MW) is almost baryonically closed, whereas EAGLE suggests that only half of the expected baryons reside within the halo. Furthermore, EAGLE predicts that this baryon deficiency extends to the LG, ($r leq 1 mathrm{~Mpc}$). The baryon deficiency in EAGLE is likely due to SNe feedback at high redshift, which generates halo-wide outflows, with high covering fractions and radial velocities, which both eject baryons and significantly impede cosmic gas accretion. Conversely, in Auriga, gas accretion is almost unaffected by feedback. These differences appear to be the result of the different energy injection methods from SNe to gas. Our results suggest that both quasar absorption lines and fast radio burst dispersion measures could constrain these two regimes with future observations.
Galaxies are surrounded by massive gas reservoirs (i.e. the circumgalactic medium; CGM) which play a key role in their evolution. The properties of the CGM, which are dependent on a variety of internal and environmental factors, are often inferred fr
The magnetic fields observed in the Milky~Way and nearby galaxies appear to be in equipartition with the turbulent, thermal, and cosmic ray energy densities, and hence are expected to be dynamically important. However, the origin of these strong magn
We study the effect of different Type Ia SN nucleosynthesis prescriptions on the Milky Way chemical evolution. To this aim, we run detailed one-infall and two-infall chemical evolution models, adopting a large compilation of yield sets corresponding
We investigate the impact of cosmic rays (CR) and different modes of CR transport on the properties of Milky Way-mass galaxies in cosmological magneto-hydrodynamical simulations in the context of the AURIGA project. We systematically study how advect
Stellar streams record the accretion history of their host galaxy. We present a set of simulated streams from disrupted dwarf galaxies in 13 cosmological simulations of Milky Way (MW)-mass galaxies from the FIRE-2 suite at $z=0$, including 7 isolated