ترغب بنشر مسار تعليمي؟ اضغط هنا

EAGLE-Auriga: effects of different subgrid models on the baryon cycle around Milky Way-mass galaxies

153   0   0.0 ( 0 )
 نشر من قبل Ashley Kelly J
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern hydrodynamical simulations reproduce many properties of the real universe. These simulations model various physical processes, but many of these are included using `subgrid models due to resolution limits. Although different subgrid models have been successful in modelling the effects of supernovae (SNe) feedback on galactic properties, it remains unclear if, and by how much, these differing implementations affect observable halo gas properties. In this work, we use `zoom-in cosmological initial conditions of two volumes selected to resemble the Local Group (LG) evolved with both the Auriga and EAGLE galaxy formation models. While the subgrid physics models in both simulations reproduce realistic stellar components of $L^star$ galaxies, they exhibit different gas properties. Namely, Auriga predicts that the Milky Way (MW) is almost baryonically closed, whereas EAGLE suggests that only half of the expected baryons reside within the halo. Furthermore, EAGLE predicts that this baryon deficiency extends to the LG, ($r leq 1 mathrm{~Mpc}$). The baryon deficiency in EAGLE is likely due to SNe feedback at high redshift, which generates halo-wide outflows, with high covering fractions and radial velocities, which both eject baryons and significantly impede cosmic gas accretion. Conversely, in Auriga, gas accretion is almost unaffected by feedback. These differences appear to be the result of the different energy injection methods from SNe to gas. Our results suggest that both quasar absorption lines and fast radio burst dispersion measures could constrain these two regimes with future observations.



قيم البحث

اقرأ أيضاً

Galaxies are surrounded by massive gas reservoirs (i.e. the circumgalactic medium; CGM) which play a key role in their evolution. The properties of the CGM, which are dependent on a variety of internal and environmental factors, are often inferred fr om absorption line surveys which rely on a limited number of single lines-of-sight. In this work we present an analysis of 28 galaxy haloes selected from the Auriga project, a cosmological magneto-hydrodynamical zoom-in simulation suite of isolated Milky Way-mass galaxies, to understand the impact of CGM diversity on observational studies. Although the Auriga haloes are selected to populate a narrow range in halo mass, our work demonstrates that the CGM of L* galaxies is extremely diverse: column densities of commonly observed species span ~3-4 dex and their covering fractions range from ~5 to 90 per cent. Despite this diversity, we identify the following correlations: 1) the covering fractions (CF) of hydrogen and metals of the Auriga haloes positively correlate with stellar mass, 2) the CF of H I, C IV, and Si II anticorrelate with active galactic nucleus luminosity due to ionization effects, and 3) the CF of H I, C IV, and Si II positively correlate with galaxy disc fraction due to outflows populating the CGM with cool and dense gas. The Auriga sample demonstrates striking diversity within the CGM of L* galaxies, which poses a challenge for observations reconstructing CGM characteristics from limited samples, and also indicates that long-term merger assembly history and recent star formation are not the dominant sculptors of the CGM.
The magnetic fields observed in the Milky~Way and nearby galaxies appear to be in equipartition with the turbulent, thermal, and cosmic ray energy densities, and hence are expected to be dynamically important. However, the origin of these strong magn etic fields is still unclear, and most previous attempts to simulate galaxy formation from cosmological initial conditions have ignored them altogether. Here, we analyse the magnetic fields predicted by the simulations of the Auriga Project, a set of 30 high-resolution cosmological zoom simulations of Milky~Way-like galaxies, carried out with a moving-mesh magneto-hydrodynamics code and a detailed galaxy formation physics model. We find that the magnetic fields grow exponentially at early times owing to a small-scale dynamo with an e-folding time of roughly $100,rm{Myr}$ in the center of halos until saturation occurs around $z=2-3$, when the magnetic energy density reaches about $10%$ of the turbulent energy density with a typical strength of $10-50,rm{mu G}$. In the galactic centers the ratio between magnetic and turbulent energy remains nearly constant until $z=0$. At larger radii, differential rotation in the disks leads to linear amplification that typically saturates around $z=0.5$ to $z=0$. The final radial and vertical variations of the magnetic field strength can be well described by two joint exponential profiles, and are in good agreement with observational constraints. Overall, the magnetic fields have only little effect on the global evolution of the galaxies as it takes too long to reach equipartition. We also demonstrate that our results are well converged with numerical resolution.
109 - Marco Palla 2021
We study the effect of different Type Ia SN nucleosynthesis prescriptions on the Milky Way chemical evolution. To this aim, we run detailed one-infall and two-infall chemical evolution models, adopting a large compilation of yield sets corresponding to different white dwarf progenitors (near-Chandrasekar and sub-Chandrasekar) taken from the literature. We adopt a fixed delay time distribution function for Type Ia SNe , in order to avoid degeneracies in the analysis of the different nucleosynthesis channels. We also combine yields for different Type Ia SN progenitors in order to test the contribution to chemical evolution of different Type Ia SN channels. The results of the models are compared with recent LTE and NLTE observational data. We find that classical W7 and WDD2 models produce Fe masses and [$alpha$/Fe] abundance patterns similar to more recent and physical near-Chandrasekar and sub- Chandrasekar models. For Fe-peak elements, we find that the results strongly depend either on the white dwarf explosion mechanism (deflagration-to-detonation, pure deflagration, double detonation) or on the initial white dwarf conditions (central density, explosion pattern). The comparison of chemical evolution model results with observations suggests that a combination of near-Chandrasekar and sub-Chandrasekar yields is necessary to reproduce the data of V, Cr, Mn and Ni, with different fractions depending on the adopted massive stars stellar yields. This comparison also suggests that NLTE and singly ionised abundances should be definitely preferred when dealing with most of Fe-peak elements at low metallicity.
69 - Tobias Buck 2019
We investigate the impact of cosmic rays (CR) and different modes of CR transport on the properties of Milky Way-mass galaxies in cosmological magneto-hydrodynamical simulations in the context of the AURIGA project. We systematically study how advect ion, anisotropic diffusion and additional Alfven-wave cooling affect the galactic disc and the circum-galactic medium (CGM). Global properties such as stellar mass and star formation rate vary little between simulations with and without various CR transport physics, whereas structural properties such as disc sizes, CGM densities or temperatures can be strongly affected. In our simulations, CRs affect the accretion of gas onto galaxies by modifying the CGM flow structure. This alters the angular momentum distribution which manifests itself as a difference in stellar and gaseous disc size. The strength of this effect depends on the CR transport model: CR advection results in the most compact discs while the Alfven-wave model resembles more the AURIGA model. The advection and diffusion models exhibit large ($rsim50$ kpc) CR pressure-dominated gas haloes causing a smoother and partly cooler CGM. The additional CR pressure smoothes small-scale density peaks and compensates for the missing thermal pressure support at lower CGM temperatures. In contrast, the Alfven-wave model is only CR pressure dominated at the disc-halo interface and only in this model the gamma-ray emission from hadronic interactions agrees with observations. In contrast to previous findings, we conclude that details of CR transport are critical for accurately predicting the impact of CR feedback on galaxy formation.
Stellar streams record the accretion history of their host galaxy. We present a set of simulated streams from disrupted dwarf galaxies in 13 cosmological simulations of Milky Way (MW)-mass galaxies from the FIRE-2 suite at $z=0$, including 7 isolated Milky Way-mass systems and 6 hosts resembling the MW-M31 pair (full dataset at: https://flathub.flatironinstitute.org/sapfire). In total, we identify 106 simulated stellar streams, with no significant differences in the number of streams and masses of their progenitors between the isolated and paired environments. We resolve simulated streams with stellar masses ranging from $sim 5times10^5$ up to $sim 10^{9} M_odot$, similar to the mass range between the Orphan and Sagittarius streams in the MW. We confirm that present-day simulated satellite galaxies are good proxies for stellar stream progenitors, with similar properties including their stellar mass function, velocity dispersion, [Fe/H] and [$alpha$/H] evolution tracks, and orbital distribution with respect to the galactic disk plane. Each progenitors lifetime is marked by several important timescales: its infall, star-formation quenching, and stream-formation times. We show that the ordering of these timescales is different between progenitors with stellar masses higher and lower than $sim 2times10^6 M_odot$. Finally, we show that the main factor controlling the rate of phase-mixing, and therefore fading, of tidal streams from satellite galaxies in MW-mass hosts is non-adiabatic evolution of the host potential. Other factors commonly used to predict phase-mixing timescales, such as progenitor mass and orbital circularity, show virtually no correlation with the number of dynamical times required for a stream to become phase-mixed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا