ﻻ يوجد ملخص باللغة العربية
Recently, transformation-based self-supervised learning has been applied to generative adversarial networks (GANs) to mitigate the catastrophic forgetting problem of discriminator by learning stable representations. However, the separate self-supervised tasks in existing self-supervised GANs cause an inconsistent goal with generative modeling due to the learning of the generator from their generator distribution-agnostic classifiers. To address this issue, we propose a novel self-supervised GANs framework with label augmentation, i.e., augmenting the GAN labels (real or fake) with the self-supervised pseudo-labels. In particular, the discriminator and the self-supervised classifier are unified to learn a single task that predicts the augmented label such that the discriminator/classifier is aware of the generator distribution, while the generator tries to confuse the discriminator/classifier by optimizing the discrepancy between the transformed real and generated distributions. Theoretically, we prove that the generator, at the equilibrium point, converges to replicate the data distribution. Empirically, we demonstrate that the proposed method significantly outperforms competitive baselines on both generative modeling and representation learning across benchmark datasets.
Recently deep learning methods, in particular, convolutional neural networks (CNNs), have led to a massive breakthrough in the range of computer vision. Also, the large-scale annotated dataset is the essential key to a successful training procedure.
We propose self-adaptive training -- a unified training algorithm that dynamically calibrates and enhances training process by model predictions without incurring extra computational cost -- to advance both supervised and self-supervised learning of
Recent work has demonstrated that neural networks are vulnerable to adversarial examples. To escape from the predicament, many works try to harden the model in various ways, in which adversarial training is an effective way which learns robust featur
Machine learning analysis of longitudinal neuroimaging data is typically based on supervised learning, which requires a large number of ground-truth labels to be informative. As ground-truth labels are often missing or expensive to obtain in neurosci
Semi-supervised learning has been gaining attention as it allows for performing image analysis tasks such as classification with limited labeled data. Some popular algorithms using Generative Adversarial Networks (GANs) for semi-supervised classifica