ﻻ يوجد ملخص باللغة العربية
In this paper, we present a novel implicit glyph shape representation, which models glyphs as shape primitives enclosed by quadratic curves, and naturally enables generating glyph images at arbitrary high resolutions. Experiments on font reconstruction and interpolation tasks verified that this structured implicit representation is suitable for describing both structure and style features of glyphs. Furthermore, based on the proposed representation, we design a simple yet effective disentangled network for the challenging one-shot font style transfer problem, and achieve the best results comparing to state-of-the-art alternatives in both quantitative and qualitative comparisons. Benefit from this representation, our generated glyphs have the potential to be converted to vector fonts through post-processing, reducing the gap between rasterized images and vector graphics. We hope this work can provide a powerful tool for 2D shape analysis and synthesis, and inspire further exploitation in implicit representations for 2D shape modeling.
Deep implicit functions (DIFs), as a kind of 3D shape representation, are becoming more and more popular in the 3D vision community due to their compactness and strong representation power. However, unlike polygon mesh-based templates, it remains a c
We introduce Multiresolution Deep Implicit Functions (MDIF), a hierarchical representation that can recover fine geometry detail, while being able to perform global operations such as shape completion. Our model represents a complex 3D shape with a h
Template 3D shapes are useful for many tasks in graphics and vision, including fitting observation data, analyzing shape collections, and transferring shape attributes. Because of the variety of geometry and topology of real-world shapes, previous me
Neural shape representations have recently shown to be effective in shape analysis and reconstruction tasks. Existing neural network methods require point coordinates and corresponding normal vectors to learn the implicit level sets of the shape. Nor
How to represent an image? While the visual world is presented in a continuous manner, machines store and see the images in a discrete way with 2D arrays of pixels. In this paper, we seek to learn a continuous representation for images. Inspired by t