ﻻ يوجد ملخص باللغة العربية
NASAs Kepler, K2 and TESS missions employ Simple Aperture Photometry (SAP) to derive time-series photometry, where an aperture is estimated for each star, and pixels containing each star are summed to create a single light curve. This method is simple, but in crowded fields the derived time-series can be highly contaminated. The alternate method of fitting a Point Spread Function (PSF) to the data is able to account for crowding, but is computationally expensive. In this paper, we present a new approach to extracting photometry from these time-series missions, which fits the PSF directly, but makes simplifying assumptions in order to greatly reduce the computation expense. Our method fixes the scene of the field in each image, estimates the PSF shape of the instrument with a linear model, and allows only source flux and position to vary. We demonstrate that our method is able to separate the photometry from blended targets in the Kepler dataset that are separated by less than a pixel. Our method is fast to compute, and fully accounts for uncertainties from degeneracies due to crowded fields. We name the method described in this work Linearized Field Deblending (LFD). We demonstrate our method on the false positive Kepler target koi. We are able to separate the photometry of the two sources in the data, and demonstrate the contaminating transiting signal is consistent with a small, sub-stellar companion with a radius of $2.67R_{jup}$ ($0.27R_{sol}$). Our method is equally applicable to extracting photometry from NASAs TESS mission.
We present T-PHOT, a publicly available software aimed at extracting accurate photometry from low-resolution images of deep extragalactic fields, where the blending of sources can be a serious problem for the accurate and unbiased measurement of flux
One of the possible approaches to detecting optical counterparts of GRBs requires monitoring large parts of the sky. This idea has gained some instrumental support in recent years, such as with the Pi of the Sky project. The broad sky coverage of the
VOStat is a Web service providing interactive statistical analysis of astronomical tabular datasets. It is integrated into the suite of analysis and visualization tools associated with the international Virtual Observatory (VO) through the SAMP commu
Despite promising astrometric signals, to date there has been no success in direct imaging of a hypothesized third member of the Sirius system. Using the Clio instrument and MagAO adaptive optics system on the Magellan Clay 6.5 m telescope, we have o
Photometry of moving sources typically suffers from reduced signal-to-noise (SNR) or flux measurements biased to incorrect low values through the use of circular apertures. To address this issue we present the software package, TRIPPy: TRailed Image