ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical properties of the massive Schwinger model from the nonperturbative functional renormalization group

77   0   0.0 ( 0 )
 نشر من قبل Patrick Jentsch
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the massive Schwinger model in $d = 1 + 1$ dimensions using bosonization and the non-perturbative functional renormalization group. In agreement with previous studies we find that the phase transition, driven by a change of the ratio $m/e$ between the mass and the charge of the fermions, belongs to the two-dimensional Ising universality class. The temperature and vacuum angle dependence of various physical quantities (chiral density, electric field, entropy density) are also determined and agree with results obtained from density matrix renormalization group studies. Screening of fractional charges and deconfinement occur only at infinite temperature.



قيم البحث

اقرأ أيضاً

The massive Schwinger model is studied, using a density matrix renormalization group approach to the staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the estimates in the continuum limit are almost two orders of magnitude more accurate than previous calculations. Colemans picture of `half-asymptotic particles at background field (theta = pi) is confirmed. The predicted phase transition at finite fermion mass (m/g) is accurately located, and demonstrated to belong in the 2D Ising universality class.
The renormalization group plays an essential role in many areas of physics, both conceptually and as a practical tool to determine the long-distance low-energy properties of many systems on the one hand and on the other hand search for viable ultravi olet completions in fundamental physics. It provides us with a natural framework to study theoretical models where degrees of freedom are correlated over long distances and that may exhibit very distinct behavior on different energy scales. The nonperturbative functional renormalization-group (FRG) approach is a modern implementation of Wilsons RG, which allows one to set up nonperturbative approximation schemes that go beyond the standard perturbative RG approaches. The FRG is based on an exact functional flow equation of a coarse-grained effective action (or Gibbs free energy in the language of statistical mechanics). We review the main approximation schemes that are commonly used to solve this flow equation and discuss applications in equilibrium and out-of-equilibrium statistical physics, quantum many-particle systems, high-energy physics and quantum gravity.
We study the renormalization group flow of $mathbb{Z}_2$-invariant supersymmetric and non-supersymmetric scalar models in the local potential approximation using functional renormalization group methods. We focus our attention to the fixed points of the renormalization group flow of these models, which emerge as scaling solutions. In two dimensions these solutions are interpreted as the minimal (supersymmetric) models of conformal field theory, while in three dimension they are manifestations of the Wilson-Fisher universality class and its supersymmetric counterpart. We also study the analytically continued flow in fractal dimensions between 2 and 4 and determine the critical dimensions for which irrelevant operators become relevant and change the universality class of the scaling solution. We also include novel analytic and numerical investigations of the properties that determine the occurrence of the scaling solutions within the method. For each solution we offer new techniques to compute the spectrum of the deformations and obtain the corresponding critical exponents.
196 - J. Berges , G. Hoffmeister 2008
Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description . For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium.
Techniques based on $n$-particle irreducible effective actions can be used to study systems where perturbation theory does not apply. The main advantage, relative to other non-perturbative continuum methods, is that the hierarchy of integral equation s that must be solved truncates at the level of the action, and no additional approximations are needed. The main problem with the method is renormalization, which until now could only be done at the lowest ($n$=2) level. In this paper we show how to obtain renormalized results from an $n$-particle irreducible effective action at any order. We consider a symmetric scalar theory with quartic coupling in four dimensions and show that the 4 loop 4-particle-irreducible calculation can be renormalized using a renormalization group method. The calculation involves one bare mass and one bare coupling constant which are introduced at the level of the Lagrangian, and cannot be done using any known method by introducing counterterms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا