ﻻ يوجد ملخص باللغة العربية
Anisotropy is one factor that appears to be significantly important in the studies of relativistic compact stars. In this paper, we make a generalization of the Buchdahl limit by incorporating an anisotropic effect for a selected class of exact solutions describing anisotropic stellar objects. In the isotropic case of a homogeneous distribution, we regain the Buchdahl limit $2M/R leq 8/9$. Our investigation shows a direct link between the maximum allowed compactness and pressure anisotropy vi-a-vis geometry of the associated $3$-space.
In this work, we present a class of relativistic and well-behaved solution to Einsteins field equations describing anisotropic matter distribution. We perform our analysis by proposing a Buchdahl ansatz which represents almost all the known analytic
Hamiltonian matrices appear in a variety or problems in physics and engineering, mostly related to the time evolution of linear dynamical systems as for instance in ion beam optics. The time evolution is given by symplectic transfer matrices which ar
We give the Buchdahl stability bound in Eddington-inspired Born-Infeld (EiBI) gravity. We show that this bound depends on an energy condition controlled by the model parameter $kappa$. From this bound, we can constrain $kappalesssim 10^{8}text{m}^2$
In the present study we have proposed a new model of an anisotropic compact star which admits the Chaplygin equation of state. For this purpose, we consider Buchdahl ansatz. We obtain the solution of proposed model in closed form which is non-singula
From arguments based on Heisenbergs uncertainty principle and Paulis exclusion principle, the molar specific heats of degenerate ideal gases at low temperatures are estimated, giving rise to values consistent with the Nerst-Planck Principle (third la