ﻻ يوجد ملخص باللغة العربية
This paper proposes a rate-profile construction method for polarization-adjusted convolutional (PAC) codes of any code length and rate, which is capable of maintaining trade-off between the error-correction performance and decoding complexity of PAC code. The proposed method can improve the error-correction performance of PAC codes while guaranteeing a low mean sequential decoding complexity for signal-to-noise ratio (SNR) values beyond a target SNR value.
Polarization-adjusted convolutional (PAC) codes were recently proposed and arouse the interest of the channel coding community because they were shown to approach theoretical bounds for the (128,64) code size. In this letter, we propose systematic PA
Two concatenated coding schemes incorporating algebraic Reed-Solomon (RS) codes and polarization-adjusted convolutional (PAC) codes are proposed. Simulation results show that at a bit error rate of $10^{-5}$, a concatenated scheme using RS and PAC co
This brief proposes a hardware implementation architecture for Fano decoding of polarization-adjusted convolutional (PAC) codes. This architecture uses a novel branch metric unit specific to PAC codes. The proposed decoder is tested on FPGA, and its
In this paper, we construct four families of linear codes over finite fields from the complements of either the union of subfields or the union of cosets of a subfield, which can produce infinite families of optimal linear codes, including infinite f
In this paper, we present an optimal metric function on average, which leads to a significantly low decoding computation while maintaining the superiority of the polarization-adjusted convolutional (PAC) codes error-correction performance. With our p