ﻻ يوجد ملخص باللغة العربية
In this paper, we present a fast exemplar-based image colorization approach using color embeddings named Color2Embed. Generally, due to the difficulty of obtaining input and ground truth image pairs, it is hard to train a exemplar-based colorization model with unsupervised and unpaired training manner. Current algorithms usually strive to achieve two procedures: i) retrieving a large number of reference images with high similarity for preparing training dataset, which is inevitably time-consuming and tedious; ii) designing complicated modules to transfer the colors of the reference image to the target image, by calculating and leveraging the deep semantic correspondence between them (e.g., non-local operation), which is computationally expensive during testing. Contrary to the previous methods, we adopt a self-augmented self-reference learning scheme, where the reference image is generated by graphical transformations from the original colorful one whereby the training can be formulated in a paired manner. Second, in order to reduce the process time, our method explicitly extracts the color embeddings and exploits a progressive style feature Transformation network, which injects the color embeddings into the reconstruction of the final image. Such design is much more lightweight and intelligible, achieving appealing performance with fast processing speed.
We propose the first deep learning approach for exemplar-based local colorization. Given a reference color image, our convolutional neural network directly maps a grayscale image to an output colorized image. Rather than using hand-crafted rules as i
This paper presents the first end-to-end network for exemplar-based video colorization. The main challenge is to achieve temporal consistency while remaining faithful to the reference style. To address this issue, we introduce a recurrent framework t
Compared to color images captured by conventional RGB cameras, monochrome images usually have better signal-to-noise ratio (SNR) and richer textures due to its higher quantum efficiency. It is thus natural to apply a mono-color dual-camera system to
Colorization has attracted increasing interest in recent years. Classic reference-based methods usually rely on external color images for plausible results. A large image database or online search engine is inevitably required for retrieving such exe
In this paper, we present a novel approach that uses deep learning techniques for colorizing grayscale images. By utilizing a pre-trained convolutional neural network, which is originally designed for image classification, we are able to separate con