ﻻ يوجد ملخص باللغة العربية
Intelligent reflecting surface (IRS) is a promising technology for achieving spectrum and energy efficient wireless networks cost-effectively. Most existing works on IRS have focused on exploiting IRS to enhance the performance of wireless communication or wireless information transmission (WIT), while its potential for boosting the efficiency of radio-frequency (RF) wireless energy transmission (WET) still remains largely open. Although IRS-aided WET shares similar characteristics with IRS-aided WIT, they differ fundamentally in terms of design objective, receiver architecture, and practical constraints. In this paper, we provide a tutorial overview on how to efficiently design IRS-aided WET systems as well as IRS-aided systems with both WIT and WET, namely IRS-aided simultaneous wireless information and power transfer (SWIPT) and IRS-aided wireless powered communication network (WPCN), mainly from a communication and signal processing perspective. In particular, we present state-of-the-art solutions to tackle the unique challenges in operating these systems, such as IRS passive reflection optimization, channel estimation and deployment. In addition, we also propose new solution approaches and point out important directions for future research and investigation.
In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple single-antenna source terminal (ST)-DT pairs in two-hop networks is investigated. Different from the previous studies on IRS that merely focused on tuning the reflect
This work examines the performance gain achieved by deploying an intelligent reflecting surface (IRS) in covert communications. To this end, we formulate the joint design of the transmit power and the IRS reflection coefficients by taking into accoun
In intelligent reflecting surface (IRS) aided wireless communication systems, channel state information (CSI) is crucial to achieve its promising passive beamforming gains. However, CSI errors are inevitable in practice and generally correlated over
We introduce a novel system setup where a backscatter device operates in the presence of an intelligent reflecting surface (IRS). In particular, we study the bistatic backscatter communication (BackCom) system assisted by an IRS. The phase shifts at
Intelligent reflecting surface (IRS) is a novel burgeoning concept, which possesses advantages in enhancing wireless communication and user localization, while maintaining low hardware cost and energy consumption. Herein, we establish an IRS-aided mm