ﻻ يوجد ملخص باللغة العربية
This work presents a self-heating study of a 40-nm bulk-CMOS technology in the ambient temperature range from 300 K down to 4.2 K. A custom test chip was designed and fabricated for measuring both the temperature rise in the MOSFET channel and in the surrounding silicon substrate, using the gate resistance and silicon diodes as sensors, respectively. Since self-heating depends on factors such as device geometry and power density, the test structure characterized in this work was specifically designed to resemble actual devices used in cryogenic qubit control ICs. Severe self-heating was observed at deep-cryogenic ambient temperatures, resulting in a channel temperature rise exceeding 50 K and having an impact detectable at a distance of up to 30 um from the device. By extracting the thermal resistance from measured data at different temperatures, it was shown that a simple model is able to accurately predict channel temperatures over the full ambient temperature range from deep-cryogenic to room temperature. The results and modeling presented in this work contribute towards the full self-heating-aware IC design-flow required for the reliable design and operation of cryo-CMOS circuits.
Cryogenic CMOS technology (cryo-CMOS) offers a scalable solution for quantum device interface fabrication. Several previous works have studied the characterization of CMOS technology at cryogenic temperatures for various process nodes. However, CMOS
This paper presents an extensive characterization and modeling of a commercial 28-nm FDSOI CMOS process operating down to cryogenic temperatures. The important cryogenic phenomena influencing this technology are discussed. The low-temperature transfe
Previous cryogenic electronics studies are most above 4.2K. In this paper we present the cryogenic characterization of a 0.18{mu}m standard bulk CMOS technology(1.8V and 5V) at sub-kelvin temperature around 270mK. PMOS and NMOS devices with different
This paper presents the first experimental investigation and physical discussion of the cryogenic behavior of a commercial 28 nm bulk CMOS technology. Here we extract the fundamental physical parameters of this technology at 300, 77 and 4.2 K based o
A novel power-efficient analog buffer at liquid helium temperature is proposed. The proposed circuit is based on an input stage consisting of two complementary differential pairs to achieve rail-to-rail level tracking. Results of simulation based on