ﻻ يوجد ملخص باللغة العربية
We consider the problem of secure distributed matrix multiplication. Coded computation has been shown to be an effective solution in distributed matrix multiplication, both providing privacy against workers and boosting the computation speed by efficiently mitigating stragglers. In this work, we present a non-direct secure extension of the recently introduced bivariate polynomial codes. Bivariate polynomial codes have been shown to be able to further speed up distributed matrix multiplication by exploiting the partial work done by the stragglers rather than completely ignoring them while reducing the upload communication cost and/or the workers storages capacity needs. We show that, especially for upload communication or storage constrained settings, the proposed approach reduces the average computation time of secure distributed matrix multiplication compared to its competitors in the literature.
We consider the problem of secure distributed matrix computation (SDMC), where a textit{user} can query a function of data matrices generated at distributed textit{source} nodes. We assume the availability of $N$ honest but curious computation server
We consider the problem of designing codes with flexible rate (referred to as rateless codes), for private distributed matrix-matrix multiplication. A master server owns two private matrices $mathbf{A}$ and $mathbf{B}$ and hires worker nodes to help
This paper investigates the problem of Secure Multi-party Batch Matrix Multiplication (SMBMM), where a user aims to compute the pairwise products $mathbf{A}divideontimesmathbf{B}triangleq(mathbf{A}^{(1)}mathbf{B}^{(1)},ldots,mathbf{A}^{(M)}mathbf{B}^
This paper studies the problem of repairing secret sharing schemes, i.e., schemes that encode a message into $n$ shares, assigned to $n$ nodes, so that any $n-r$ nodes can decode the message but any colluding $z$ nodes cannot infer any information ab
This paper considers the problem of secure coding design for a type II wiretap channel, where the main channel is noiseless and the eavesdropper channel is a general binary-input symmetric-output memoryless channel. The proposed secure error-correcti