ترغب بنشر مسار تعليمي؟ اضغط هنا

Visualizing nematic transition and nanoscale suppression of superconductivity in Fe(Te,Se)

204   0   0.0 ( 0 )
 نشر من قبل Ilija Zeljkovic
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interplay of different electronic phases underlies the physics of unconventional superconductors. One of the most intriguing examples is a high-Tc superconductor FeTe1-xSex: it undergoes both a topological transition, linked to the electronic band inversion, and an electronic nematic phase transition, associated with rotation symmetry breaking, around the same critical composition xc where superconducting Tc peaks. At this regime, nematic fluctuations and symmetry-breaking strain could have an enormous impact, but this is yet to be fully explored. Using spectroscopic-imaging scanning tunneling microscopy, we study the electronic nematic transition in FeTe1-xSex as a function of composition. Near xc, we reveal the emergence of electronic nematicity in nanoscale regions. Interestingly, we discover that superconductivity is drastically suppressed in areas where static nematic order is the strongest. By analyzing atomic displacement in STM topographs, we find that small anisotropic strain can give rise to these strongly nematic localized regions. Our experiments reveal a tendency of FeTe1-xSex near x~0.45 to form puddles hosting static nematic order, suggestive of nematic fluctuations pinned by structural inhomogeneity, and demonstrate a pronounced effect of anisotropic strain on superconductivity in this regime.



قيم البحث

اقرأ أيضاً

The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in recent reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe$_{0.55}$Se$_{0.45}$. An associated puzzle is that the top ological features and superconducting properties are not observed uniformly across the sample surface. Understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy (ARPES), and microprobe composition and resistivity measurements to characterize the electronic state of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, while the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe$_{0.55}$Se$_{0.45}$ is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.
148 - Shingo Yonezawa 2018
Nematic superconductivity is a novel class of superconductivity characterized by spontaneous rotational-symmetry breaking in the superconducting gap amplitude and/or Cooper-pair spins with respect to the underlying lattice symmetry. Doped Bi2Se3 supe rconductors, such as CuxBi2Se3, SrxBi2Se3, and NbxBi2Se3, are considered as candidates for nematic superconductors, in addition to the anticipated topological superconductivity. Recently, various bulk probes, such as nuclear magnetic resonance, specific heat, magnetotransport, magnetic torque, and magnetization, have consistently revealed two-fold symmetric behavior in their in-plane magnetic-field-direction dependence, although the underlying crystal lattice possesses three-fold rotational symmetry. More recently, nematic superconductivity is directly visualized using scanning tunneling microscopy and spectroscopy. In this short review, we summarize the current researches on the nematic behavior in superconducting doped Bi2Se3 systems, and discuss issues and perspectives.
After the discovery of nematic topological superconductivity in CuxBi2Se3, carrier-doped topological insulators are established as a fertile ground for topological superconductors. The superconductor Cu1.5(PbSe)5(Bi2Se3)6 (CPSBS) contains Bi2Se3 bloc ks as a constitutional unit, but its superconducting gap appears to have nodes [S. Sasaki et al., Phys. Rev. B 90, 220504 (2014)], which is in contrast to the fully-opened gap in CuxBi2Se3 and the relation between the two superconductors remained an open question. Here we report our observation of clear two-fold symmetry in the in-plane magnetic-field-direction dependencies of the upper critical field and of the specific heat of CPSBS, where the direction of the maxima, which is different from that in CuxBi2Se3, indicates that the gap nodes are located in the mirror plane of the crystal lattice. This means that the topological nematic state with mirror-symmetry-protected nodes is realized in CPSBS.
Nematic states are characterized by rotational symmetry breaking without translational ordering. Recently, nematic superconductivity, in which the superconducting gap spontaneously lifts the rotational symmetry of the lattice, has been discovered. Ho wever the pairing mechanism and the mechanism determining the nematic orientation remain unresolved. A first step is to demonstrate control of the nematicity, through application of an external symmetry-breaking field, to determine the sign and strength of coupling to the lattice. Here, we report for the first time control of the nematic orientation of the superconductivity of Sr$_x$Bi$_2$Se$_3$, through externally-applied uniaxial stress. The suppression of subdomains indicates that it is the $Delta_{4y}$ state that is most favoured under compression along the basal Bi-Bi bonds. These results provide an inevitable step towards understanding the microscopic origin of the unique topological nematic superconductivity.
Unconventional superconductivity is characterized by the spontaneous symmetry breaking of the macroscopic superconducting wavefunction in addition to the gauge symmetry breaking, such as rotational-symmetry breaking with respect to the underlying cry stal-lattice symmetry. Particularly, superconductivity with spontaneous rotational-symmetry breaking in the wavefunction amplitude and thus in bulk properties, not yet reported previously, is intriguing and can be termed nematic superconductivity in analogy to nematic liquid-crystal phases. Here, based on specific-heat measurements of the single-crystalline Cu$_x$Bi$_2$Se$_3$ under accurate magnetic-field-direction control, we report thermodynamic evidence for nematic superconductivity, namely, clear two-fold-symmetric behavior in a trigonal lattice. The results indicate realization of an odd-parity nematic state, feasible only by macroscopic quantum condensates and distinct from nematic states in liquid crystals. The results also confirm topologically non-trivial superconductivity in Cu$_x$Bi$_2$Se$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا