ترغب بنشر مسار تعليمي؟ اضغط هنا

Transferability of optimal QAOA parameters between random graphs

55   0   0.0 ( 0 )
 نشر من قبل Alexey Galda Ph.D.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced combinatorial optimization. In a typical QAOA setup, a set of quantum circuit parameters is optimized to prepare a quantum state used to find the optimal solution of a combinatorial optimization problem. Several empirical observations about optimal parameter concentration effects for special QAOA MaxCut problem instances have been made in recent literature, however, a rigorous study of the subject is still lacking. We show that convergence of the optimal QAOA parameters around specific values and, consequently, successful transferability of parameters between different QAOA instances can be explained and predicted based on the local properties of the graphs, specifically the types of subgraphs (lightcones) from which the graphs are composed. We apply this approach to random regular and general random graphs. For example, we demonstrate how optimized parameters calculated for a 6-node random graph can be successfully used without modification as nearly optimal parameters for a 64-node random graph, with less than 1% reduction in approximation ratio as a result. This work presents a pathway to identifying classes of combinatorial optimization instances for which such variational quantum algorithms as QAOA can be substantially accelerated.



قيم البحث

اقرأ أيضاً

We study the relationship between the Quantum Approximate Optimization Algorithm (QAOA) and the underlying symmetries of the objective function to be optimized. Our approach formalizes the connection between quantum symmetry properties of the QAOA dy namics and the group of classical symmetries of the objective function. The connection is general and includes but is not limited to problems defined on graphs. We show a series of results exploring the connection and highlight examples of hard problem classes where a nontrivial symmetry subgroup can be obtained efficiently. In particular we show how classical objective function symmetries lead to invariant measurement outcome probabilities across states connected by such symmetries, independent of the choice of algorithm parameters or number of layers. To illustrate the power of the developed connection, we apply machine learning techniques towards predicting QAOA performance based on symmetry considerations. We provide numerical evidence that a small set of graph symmetry properties suffices to predict the minimum QAOA depth required to achieve a target approximation ratio on the MaxCut problem, in a practically important setting where QAOA parameter schedules are constrained to be linear and hence easier to optimize.
118 - Kunal Marwaha 2021
The $p$-stage Quantum Approximate Optimization Algorithm (QAOA$_p$) is a promising approach for combinatorial optimization on noisy intermediate-scale quantum (NISQ) devices, but its theoretical behavior is not well understood beyond $p=1$. We analyz e QAOA$_2$ for the maximum cut problem (MAX-CUT), deriving a graph-size-independent expression for the expected cut fraction on any $D$-regular graph of girth $> 5$ (i.e. without triangles, squares, or pentagons). We show that for all degrees $D ge 2$ and every $D$-regular graph $G$ of girth $> 5$, QAOA$_2$ has a larger expected cut fraction than QAOA$_1$ on $G$. However, we also show that there exists a $2$-local randomized classical algorithm $A$ such that $A$ has a larger expected cut fraction than QAOA$_2$ on all $G$. This supports our conjecture that for every constant $p$, there exists a local classical MAX-CUT algorithm that performs as well as QAOA$_p$ on all graphs.
Knowledge transferability, or transfer learning, has been widely adopted to allow a pre-trained model in the source domain to be effectively adapted to downstream tasks in the target domain. It is thus important to explore and understand the factors affecting knowledge transferability. In this paper, as the first work, we analyze and demonstrate the connections between knowledge transferability and another important phenomenon--adversarial transferability, emph{i.e.}, adversarial examples generated against one model can be transferred to attack other models. Our theoretical studies show that adversarial transferability indicates knowledge transferability and vice versa. Moreover, based on the theoretical insights, we propose two practical adversarial transferability metrics to characterize this process, serving as bidirectional indicators between adversarial and knowledge transferability. We conduct extensive experiments for different scenarios on diverse datasets, showing a positive correlation between adversarial transferability and knowledge transferability. Our findings will shed light on future research about effective knowledge transfer learning and adversarial transferability analyses.
Recently Xue et al. [arXiv:1909.02196] demonstrated numerically that QAOA performance varies as a power law in the amount of noise under certain physical noise models. In this short note, we provide a deeper analysis of the origin of this behavior. I n particular, we provide an approximate closed form equation for the fidelity and cost in terms of the noise rate, system size, and circuit depth. As an application, we show these equations accurately model the trade off between larger circuits which attain better cost values, at the expense of greater degradation due to noise.
We address the joint estimation of the two defining parameters of a displacement operation in phase space. In a measurement scheme based on a Gaussian probe field and two homodyne detectors, it is shown that both conjugated parameters can be measured below the standard quantum limit when the probe field is entangled. We derive the most informative Cramer-Rao bound, providing the theoretical benchmark on the estimation and observe that our scheme is nearly optimal for a wide parameter range characterizing the probe field. We discuss the role of the entanglement as well as the relation between our measurement strategy and the generalized uncertainty relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا