ﻻ يوجد ملخص باللغة العربية
The Quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced combinatorial optimization. In a typical QAOA setup, a set of quantum circuit parameters is optimized to prepare a quantum state used to find the optimal solution of a combinatorial optimization problem. Several empirical observations about optimal parameter concentration effects for special QAOA MaxCut problem instances have been made in recent literature, however, a rigorous study of the subject is still lacking. We show that convergence of the optimal QAOA parameters around specific values and, consequently, successful transferability of parameters between different QAOA instances can be explained and predicted based on the local properties of the graphs, specifically the types of subgraphs (lightcones) from which the graphs are composed. We apply this approach to random regular and general random graphs. For example, we demonstrate how optimized parameters calculated for a 6-node random graph can be successfully used without modification as nearly optimal parameters for a 64-node random graph, with less than 1% reduction in approximation ratio as a result. This work presents a pathway to identifying classes of combinatorial optimization instances for which such variational quantum algorithms as QAOA can be substantially accelerated.
We study the relationship between the Quantum Approximate Optimization Algorithm (QAOA) and the underlying symmetries of the objective function to be optimized. Our approach formalizes the connection between quantum symmetry properties of the QAOA dy
The $p$-stage Quantum Approximate Optimization Algorithm (QAOA$_p$) is a promising approach for combinatorial optimization on noisy intermediate-scale quantum (NISQ) devices, but its theoretical behavior is not well understood beyond $p=1$. We analyz
Knowledge transferability, or transfer learning, has been widely adopted to allow a pre-trained model in the source domain to be effectively adapted to downstream tasks in the target domain. It is thus important to explore and understand the factors
Recently Xue et al. [arXiv:1909.02196] demonstrated numerically that QAOA performance varies as a power law in the amount of noise under certain physical noise models. In this short note, we provide a deeper analysis of the origin of this behavior. I
We address the joint estimation of the two defining parameters of a displacement operation in phase space. In a measurement scheme based on a Gaussian probe field and two homodyne detectors, it is shown that both conjugated parameters can be measured