ﻻ يوجد ملخص باللغة العربية
In this article we study the Dyson Bessel process, which describes the evolution of singular values of rectangular matrix Brownian motions, and prove a large deviation principle for its empirical particle density. We then use it to obtain the asymptotics of the so-called rectangular spherical integrals as $m,n$ go to infinity while $m/n$ converges.
We substantially refine asymptotic logarithmic upper bounds produced by Svante Janson (2015) on the right tail of the limiting QuickSort distribution function $F$ and by Fill and Hung (2018) on the right tails of the corresponding density $f$ and of
We derive the large deviation principle for radial Schramm-Loewner evolution ($operatorname{SLE}$) on the unit disk with parameter $kappa rightarrow infty$. Restricting to the time interval $[0,1]$, the good rate function is finite only on a certain
Let $X^{(delta)}$ be a Wishart process of dimension $delta$, with values in the set of positive matrices of size $m$. We are interested in the large deviations for a family of matrix-valued processes ${delta^{-1} X_t^{(delta)}, t leq 1 }$ as $delta$
We prove a Large Deviations Principle for the number of intersections of two independent infinite-time ranges in dimension five and more, improving upon the moment bounds of Khanin, Mazel, Shlosman and Sina{i} [KMSS94]. This settles, in the discrete
We consider a classical model related to an empirical distribution function $ F_n(t)=frac{1}{n}sum_{k=1}^nI_{{xi_kle t}}$ of $(xi_k)_{ige 1}$ -- i.i.d. sequence of random variables, supported on the interval $[0,1]$, with continuous distribution func