ترغب بنشر مسار تعليمي؟ اضغط هنا

Inferring the mixing properties of an ergodic process

56   0   0.0 ( 0 )
 نشر من قبل Azadeh Khaleghi
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose strongly consistent estimators of the $ell_1$ norm of the sequence of $alpha$-mixing (respectively $beta$-mixing) coefficients of a stationary ergodic process. We further provide strongly consistent estimators of individual $alpha$-mixing (respectively $beta$-mixing) coefficients for a subclass of stationary $alpha$-mixing (respectively $beta$-mixing) processes with summable sequences of mixing coefficients. The estimators are in turn used to develop strongly consistent goodness-of-fit hypothesis tests. In particular, we develop hypothesis tests to determine whether, under the same summability assumption, the $alpha$-mixing (respectively $beta$-mixing) coefficients of a process are upper bounded by a given rate function. Moreover, given a sample generated by a (not necessarily mixing) stationary ergodic process, we provide a consistent test to discern the null hypothesis that the $ell_1$ norm of the sequence $boldsymbol{alpha}$ of $alpha$-mixing coefficients of the process is bounded by a given threshold $gamma in [0,infty)$ from the alternative hypothesis that $leftlVert boldsymbol{alpha} rightrVert> gamma$. An analogous goodness-of-fit test is proposed for the $ell_1$ norm of the sequence of $beta$-mixing coefficients of a stationary ergodic process. Moreover, the procedure gives rise to an asymptotically consistent test for independence.



قيم البحث

اقرأ أيضاً

112 - S. P. Flego , A. Plastino , 2011
It is well known that a suggestive relation exists that links Schrodingers equation (SE) to the information-optimizing principle based on Fishers information measure (FIM). We explore here an approach that will allow one to infer the optimal FIM comp atible with a given amount of prior information without explicitly solving first the associated SE. This technique is based on the virial theorem and it provides analytic solutions for the physically relevant FIM, that which is minimal subject to the constraints posed by the prior information.
This paper has been temporarily withdrawn, pending a revised version taking into account similarities between this paper and the recent work of del Barrio, Gine and Utzet (Bernoulli, 11 (1), 2005, 131-189).
80 - Chunhao Cai , Min Zhang 2020
This paper is devoted to parameter estimation of the mixed fractional Ornstein-Uhlenbeck process with a drift. Large sample asymptotical properties of the Maximum Likelihood Estimator is deduced using the Laplace transform computations or the Cameron-Martin formula with extra part from cite{CK19}
The study of records in the Linear Drift Model (LDM) has attracted much attention recently due to applications in several fields. In the present paper we study $delta$-records in the LDM, defined as observations which are greater than all previous ob servations, plus a fixed real quantity $delta$. We give analytical properties of the probability of $delta$-records and study the correlation between $delta$-record events. We also analyse the asymptotic behaviour of the number of $delta$-records among the first $n$ observations and give conditions for convergence to the Gaussian distribution. As a consequence of our results, we solve a conjecture posed in J. Stat. Mech. 2010, P10013, regarding the total number of records in a LDM with negative drift. Examples of application to particular distributions, such as Gumbel or Pareto are also provided. We illustrate our results with a real data set of summer temperatures in Spain, where the LDM is consistent with the global-warming phenomenon.
We study capital process behavior in the fair-coin game and biased-coin games in the framework of the game-theoretic probability of Shafer and Vovk (2001). We show that if Skeptic uses a Bayesian strategy with a beta prior, the capital process is luc idly expressed in terms of the past average of Realitys moves. From this it is proved that the Skeptics Bayesian strategy weakly forces the strong law of large numbers (SLLN) with the convergence rate of O(sqrt{log n/n})$ and if Reality violates SLLN then the exponential growth rate of the capital process is very accurately described in terms of the Kullback divergence between the average of Realitys moves when she violates SLLN and the average when she observes SLLN. We also investigate optimality properties associated with Bayesian strategy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا