ﻻ يوجد ملخص باللغة العربية
We propose strongly consistent estimators of the $ell_1$ norm of the sequence of $alpha$-mixing (respectively $beta$-mixing) coefficients of a stationary ergodic process. We further provide strongly consistent estimators of individual $alpha$-mixing (respectively $beta$-mixing) coefficients for a subclass of stationary $alpha$-mixing (respectively $beta$-mixing) processes with summable sequences of mixing coefficients. The estimators are in turn used to develop strongly consistent goodness-of-fit hypothesis tests. In particular, we develop hypothesis tests to determine whether, under the same summability assumption, the $alpha$-mixing (respectively $beta$-mixing) coefficients of a process are upper bounded by a given rate function. Moreover, given a sample generated by a (not necessarily mixing) stationary ergodic process, we provide a consistent test to discern the null hypothesis that the $ell_1$ norm of the sequence $boldsymbol{alpha}$ of $alpha$-mixing coefficients of the process is bounded by a given threshold $gamma in [0,infty)$ from the alternative hypothesis that $leftlVert boldsymbol{alpha} rightrVert> gamma$. An analogous goodness-of-fit test is proposed for the $ell_1$ norm of the sequence of $beta$-mixing coefficients of a stationary ergodic process. Moreover, the procedure gives rise to an asymptotically consistent test for independence.
It is well known that a suggestive relation exists that links Schrodingers equation (SE) to the information-optimizing principle based on Fishers information measure (FIM). We explore here an approach that will allow one to infer the optimal FIM comp
This paper has been temporarily withdrawn, pending a revised version taking into account similarities between this paper and the recent work of del Barrio, Gine and Utzet (Bernoulli, 11 (1), 2005, 131-189).
This paper is devoted to parameter estimation of the mixed fractional Ornstein-Uhlenbeck process with a drift. Large sample asymptotical properties of the Maximum Likelihood Estimator is deduced using the Laplace transform computations or the Cameron-Martin formula with extra part from cite{CK19}
The study of records in the Linear Drift Model (LDM) has attracted much attention recently due to applications in several fields. In the present paper we study $delta$-records in the LDM, defined as observations which are greater than all previous ob
We study capital process behavior in the fair-coin game and biased-coin games in the framework of the game-theoretic probability of Shafer and Vovk (2001). We show that if Skeptic uses a Bayesian strategy with a beta prior, the capital process is luc