ﻻ يوجد ملخص باللغة العربية
Significant clustering around the rarest luminous quasars is a feature predicted by dark matter theory combined with number density matching arguments. However, this expectation is not reflected by observations of quasars residing in a diverse range of environments. Here, we assess the tension in the diverse clustering of visible $i$-band dropout galaxies around luminous $zsim6$ quasars. Our approach uses a simple empirical method to derive the median luminosity to halo mass relation, $L_{c}(M_{h})$ for both quasars and galaxies under the assumption of log-normal luminosity scatter, $Sigma_{Q}$ and $Sigma_{G}$. We show that higher $Sigma_{Q}$ reduces the average halo mass hosting a quasar of a given luminosity, thus introducing at least a partial reversion to the mean in the number count distribution of nearby Lyman-Break galaxies. We generate a large sample of mock Hubble Space Telescope fields-of-view centred across rare $zsim6$ quasars by resampling pencil beams traced through the dark matter component of the BlueTides cosmological simulation. We find that diverse quasar environments are expected for $Sigma_{Q}>0.4$, consistent with numerous observations and theoretical studies. However, we note that the average number of galaxies around the central quasar is primarily driven by galaxy evolutionary processes in neighbouring halos, as embodied by our parameter $Sigma_{G}$, instead of a difference in the large scale structure around the central quasar host, embodied by $Sigma_{Q}$. We conclude that models with $Sigma_{G}>0.3$ are consistent with current observational constraints on high-z quasars, and that such a value is comparable to the scatter estimated from hydrodynamical simulations of galaxy formation.
We study the mass of quasar-hosting dark matter halos at z $sim$ 6 and further constrain the fraction of dark matter halos hosting an active quasar $f_{on}$ and the quasar beaming angle $i_{rm max}$ using observations of CII lines in the literature.
The most luminous quasars at high redshift harbour the fastest-growing and most massive black holes in the early Universe. They are exceedingly rare and hard to find. Here, we present our search for the most luminous quasars in the redshift range fro
In the standard picture of structure formation, the first massive galaxies are expected to form at the highest peaks of the density field, which constitute the cores of massive proto-clusters. Luminous quasars (QSOs) at z~4 are the most strongly clus
We present Reverberation Mapping (RM) results for 17 high-redshift, high-luminosity quasars with good quality R-band and emission line light curves. We are able to measure statistically significant lags for Ly_alpha (11 objects), SiIV (5 objects), CI
Galaxy interactions are thought to be one of the main triggers of Active Galactic Nuclei (AGN), especially at high luminosities, where the accreted gas mass during the AGN lifetime is substantial. Evidence for a connection between mergers and AGN, ho