ترغب بنشر مسار تعليمي؟ اضغط هنا

WASE: Learning When to Attend for Speaker Extraction in Cocktail Party Environments

91   0   0.0 ( 0 )
 نشر من قبل Yunzhe Hao
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In the speaker extraction problem, it is found that additional information from the target speaker contributes to the tracking and extraction of the target speaker, which includes voiceprint, lip movement, facial expression, and spatial information. However, no one cares for the cue of sound onset, which has been emphasized in the auditory scene analysis and psychology. Inspired by it, we explicitly modeled the onset cue and verified the effectiveness in the speaker extraction task. We further extended to the onset/offset cues and got performance improvement. From the perspective of tasks, our onset/offset-based model completes the composite task, a complementary combination of speaker extraction and speaker-dependent voice activity detection. We also combined voiceprint with onset/offset cues. Voiceprint models voice characteristics of the target while onset/offset models the start/end information of the speech. From the perspective of auditory scene analysis, the combination of two perception cues can promote the integrity of the auditory object. The experiment results are also close to state-of-the-art performance, using nearly half of the parameters. We hope that this work will inspire communities of speech processing and psychology, and contribute to communication between them. Our code will be available in https://github.com/aispeech-lab/wase/.



قيم البحث

اقرأ أيضاً

Speech recognition in cocktail-party environments remains a significant challenge for state-of-the-art speech recognition systems, as it is extremely difficult to extract an acoustic signal of an individual speaker from a background of overlapping sp eech with similar frequency and temporal characteristics. We propose the use of speaker-targeted acoustic and audio-visual models for this task. We complement the acoustic features in a hybrid DNN-HMM model with information of the target speakers identity as well as visual features from the mouth region of the target speaker. Experimentation was performed using simulated cocktail-party data generated from the GRID audio-visual corpus by overlapping two speakerss speech on a single acoustic channel. Our audio-only baseline achieved a WER of 26.3%. The audio-visual model improved the WER to 4.4%. Introducing speaker identity information had an even more pronounced effect, improving the WER to 3.6%. Combining both approaches, however, did not significantly improve performance further. Our work demonstrates that speaker-targeted models can significantly improve the speech recognition in cocktail party environments.
Due to the widespread deployment of fingerprint/face/speaker recognition systems, attacking deep learning based biometric systems has drawn more and more attention. Previous research mainly studied the attack to the vision-based system, such as finge rprint and face recognition. While the attack for speaker recognition has not been investigated yet, although it has been widely used in our daily life. In this paper, we attempt to fool the state-of-the-art speaker recognition model and present textit{speaker recognition attacker}, a lightweight model to fool the deep speaker recognition model by adding imperceptible perturbations onto the raw speech waveform. We find that the speaker recognition system is also vulnerable to the attack, and we achieve a high success rate on the non-targeted attack. Besides, we also present an effective method to optimize the speaker recognition attacker to obtain a trade-off between the attack success rate with the perceptual quality. Experiments on the TIMIT dataset show that we can achieve a sentence error rate of $99.2%$ with an average SNR $57.2text{dB}$ and PESQ 4.2 with speed rather faster than real-time.
The technique of transforming voices in order to hide the real identity of a speaker is called voice disguise, among which automatic voice disguise (AVD) by modifying the spectral and temporal characteristics of voices with miscellaneous algorithms a re easily conducted with softwares accessible to the public. AVD has posed great threat to both human listening and automatic speaker verification (ASV). In this paper, we have found that ASV is not only a victim of AVD but could be a tool to beat some simple types of AVD. Firstly, three types of AVD, pitch scaling, vocal tract length normalization (VTLN) and voice conversion (VC), are introduced as representative methods. State-of-the-art ASV methods are subsequently utilized to objectively evaluate the impact of AVD on ASV by equal error rates (EER). Moreover, an approach to restore disguised voice to its original version is proposed by minimizing a function of ASV scores w.r.t. restoration parameters. Experiments are then conducted on disguised voices from Voxceleb, a dataset recorded in real-world noisy scenario. The results have shown that, for the voice disguise by pitch scaling, the proposed approach obtains an EER around 7% comparing to the 30% EER of a recently proposed baseline using the ratio of fundamental frequencies. The proposed approach generalizes well to restore the disguise with nonlinear frequency warping in VTLN by reducing its EER from 34.3% to 18.5%. However, it is difficult to restore the source speakers in VC by our approach, where more complex forms of restoration functions or other paralinguistic cues might be necessary to restore the nonlinear transform in VC. Finally, contrastive visualization on ASV features with and without restoration illustrate the role of the proposed approach in an intuitive way.
Speaker extraction aims to mimic humans selective auditory attention by extracting a target speakers voice from a multi-talker environment. It is common to perform the extraction in frequency-domain, and reconstruct the time-domain signal from the ex tracted magnitude and estimated phase spectra. However, such an approach is adversely affected by the inherent difficulty of phase estimation. Inspired by Conv-TasNet, we propose a time-domain speaker extraction network (SpEx) that converts the mixture speech into multi-scale embedding coefficients instead of decomposing the speech signal into magnitude and phase spectra. In this way, we avoid phase estimation. The SpEx network consists of four network components, namely speaker encoder, speech encoder, speaker extractor, and speech decoder. Specifically, the speech encoder converts the mixture speech into multi-scale embedding coefficients, the speaker encoder learns to represent the target speaker with a speaker embedding. The speaker extractor takes the multi-scale embedding coefficients and target speaker embedding as input and estimates a receptive mask. Finally, the speech decoder reconstructs the target speakers speech from the masked embedding coefficients. We also propose a multi-task learning framework and a multi-scale embedding implementation. Experimental results show that the proposed SpEx achieves 37.3%, 37.7% and 15.0% relative improvements over the best baseline in terms of signal-to-distortion ratio (SDR), scale-invariant SDR (SI-SDR), and perceptual evaluation of speech quality (PESQ) under an open evaluation condition.
Speaker extraction algorithm relies on the speech sample from the target speaker as the reference point to focus its attention. Such a reference speech is typically pre-recorded. On the other hand, the temporal synchronization between speech and lip movement also serves as an informative cue. Motivated by this idea, we study a novel technique to use speech-lip visual cues to extract reference target speech directly from mixture speech during inference time, without the need of pre-recorded reference speech. We propose a multi-modal speaker extraction network, named MuSE, that is conditioned only on a lip image sequence. MuSE not only outperforms other competitive baselines in terms of SI-SDR and PESQ, but also shows consistent improvement in cross-dataset evaluations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا