ﻻ يوجد ملخص باللغة العربية
Heterointerfaces with symmetry breaking and strong interfacial coupling could give rise to the enormous exotic quantum phenomena. Here, we report on the experimental observation of intriguing two-dimensional superconductivity with superconducting transition temperature ($T_c$) of 3.8 K at heterostructure of Mott insulator Ti$_2$O$_3$ and polar semiconductor GaN revealed by the electrical transport and magnetization measurements. Furthermore, at the verge of superconductivity we find a wide range of temperature independent resistance associated with vanishing Hall resistance, demonstrating the emergence of quantum metallic-like state with the Bose-metal scenario of the metallic phase. By tuning the thickness of Ti$_2$O$_3$ films, the emergence of quantum metallic-like state accompanies with the appearance of superconductivity as decreasing in temperature, implying that the two-dimensional superconductivity is evolved from the quantum metallic-like state driven by the cooperative effects of the electron correlation and the interfacial coupling between Ti$_2$O$_3$ and polar GaN. These findings provide a new platform for the study of intriguing two-dimensional superconductivity with a delicate interplay of the electron correlation and the interfacial coupling at the heterostructures, and unveil the clues of the mechanism of unconventional superconductivity.
Superconductivity at the interface of a heterostructure confined to nanometer-sized scale offers unique opportunities to study the exotic physics of two-dimensional superconductivity. The realization of superconductivity at the interface between a to
We report an NMR and magnetometry study on the expanded intercalated fulleride Cs_3C_60 in both its A15 and face centered cubic structures. NMR allowed us to evidence that both exhibit a first-order Mott transition to a superconducting (SC) state, oc
We have performed several high pressure electrical resistance experiments on Bi1.98Sr2.06Y0.68Cu2O8, an insulating parent compound of the high-Tc Bi2212 family of copper oxide superconductors. We find a resistive anomaly, a downturn at low temperatur
Interplay of Pomeranchuk instability (spontaneous symmetry breaking of the Fermi surface) and d-wave superconductivity is studied for the repulsive Hubbard model on the square lattice with the dynamical mean field theory combined with the fluctuation
SU(4) dynamical symmetry is shown to imply a no-double-occupancy constraint on the minimal symmetry description of antiferromagnetism and d-wave superconductivity. This implies a maximum doping fraction of 1/4 for cuprates and provides a microscopic