ﻻ يوجد ملخص باللغة العربية
E-commerce companies have to face abnormal sellers who sell potentially-risky products. Typically, the risk can be identified by jointly considering product content (e.g., title and image) and seller behavior. This work focuses on behavior feature extraction as behavior sequences can provide valuable clues for the risk discovery by reflecting the sellers operation habits. Traditional feature extraction techniques heavily depend on domain experts and adapt poorly to new tasks. In this paper, we propose a self-supervised method InfoBehavior to automatically extract meaningful representations from ultra-long raw behavior sequences instead of the costly feature selection procedure. InfoBehavior utilizes Bidirectional Transformer as feature encoder due to its excellent capability in modeling long-term dependency. However, it is intractable for commodity GPUs because the time and memory required by Transformer grow quadratically with the increase of sequence length. Thus, we propose a hierarchical grouping strategy to aggregate ultra-long raw behavior sequences to length-processable high-level embedding sequences. Moreover, we introduce two types of pretext tasks. Sequence-related pretext task defines a contrastive-based training objective to correctly select the masked-out coarse-grained/fine-grained behavior sequences against other distractor behavior sequences; Domain-related pretext task designs a classification training objective to correctly predict the domain-specific statistical results of anomalous behavior. We show that behavior representations from the pre-trained InfoBehavior can be directly used or integrated with features from other side information to support a wide range of downstream tasks. Experimental results demonstrate that InfoBehavior significantly improves the performance of Product Risk Management and Intellectual Property Protection.
Graph neural networks~(GNNs) apply deep learning techniques to graph-structured data and have achieved promising performance in graph representation learning. However, existing GNNs rely heavily on enough labels or well-designed negative samples. To
Timely detection of horse pain is important for equine welfare. Horses express pain through their facial and body behavior, but may hide signs of pain from unfamiliar human observers. In addition, collecting visual data with detailed annotation of ho
We present the Topology Transformation Equivariant Representation learning, a general paradigm of self-supervised learning for node representations of graph data to enable the wide applicability of Graph Convolutional Neural Networks (GCNNs). We form
Spoken question answering (SQA) requires fine-grained understanding of both spoken documents and questions for the optimal answer prediction. In this paper, we propose novel training schemes for spoken question answering with a self-supervised traini
Self-Supervised Learning (SSL) using huge unlabeled data has been successfully explored for image and natural language processing. Recent works also investigated SSL from speech. They were notably successful to improve performance on downstream tasks