ﻻ يوجد ملخص باللغة العربية
Group recommender systems are widely used in current web applications. In this paper, we propose a novel group recommender system based on the deep reinforcement learning. We introduce the MovieLens data at first and generate one random group dataset, MovieLens-Rand, from it. This randomly generated dataset is described and analyzed. We also present experimental settings and two state-of-art baselines, AGREE and GroupIM. The framework of our novel model, the Deep Reinforcement learning based Group Recommender system (DRGR), is proposed. Actor-critic networks are implemented with the deep deterministic policy gradient algorithm. The DRGR model is applied on the MovieLens-Rand dataset with two baselines. Compared with baselines, we conclude that DRGR performs better than GroupIM due to long interaction histories but worse than AGREE because of the self-attention mechanism. We express advantages and shortcomings of DRGR and also give future improvement directions at the end.
This paper advocates privacy preserving requirements on collection of user data for recommender systems. The purpose of our study is twofold. First, we ask if restrictions on data collection will hurt test quality of RNN-based recommendations. We stu
With the recent prevalence of Reinforcement Learning (RL), there have been tremendous interests in utilizing RL for online advertising in recommendation platforms (e.g., e-commerce and news feed sites). However, most RL-based advertising algorithms f
Recent advances in research have demonstrated the effectiveness of knowledge graphs (KG) in providing valuable external knowledge to improve recommendation systems (RS). A knowledge graph is capable of encoding high-order relations that connect two o
In online advertising, recommender systems try to propose items from a list of products to potential customers according to their interests. Such systems have been increasingly deployed in E-commerce due to the rapid growth of information technology
In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement le