A Wideband Sliding Correlation Channel Sounder in 65 nm CMOS: Evaluation Board Performance


الملخص بالإنكليزية

Emerging applications such as wireless sensing, position location, robotics, and many more are driven by the ultra-wide bandwidths available at millimeter-wave (mmWave) and Terahertz (THz) frequencies. The characterization and efficient utilization of wireless channels at these extremely high frequencies require detailed knowledge of the radio propagation characteristics of the channels. Such knowledge is developed through empirical observations of operating conditions using wireless transceivers that measure the impulse response through channel sounding. Today, cutting-edge channel sounders rely on several bulky RF hardware components with complicated interconnections, large parasitics, and sub-GHz RF bandwidth. This paper presents a compact sliding correlation-based channel sounder baseband built on a monolithic integrated circuit (IC) using 65 nm CMOS, implemented as an evaluation board achieving a 2 GHz RF bandwidth. The IC is the worlds first gigabit-per-second channel sounder baseband implemented in low-cost CMOS. The presented single-board system can be employed at both the transmit and receive baseband to study multipath characteristics and path loss. Thus, the singleboard implementation provides an inexpensive and compact solution for sliding correlation-based channel sounding with 1 ns multipath delay resolution.

تحميل البحث