ﻻ يوجد ملخص باللغة العربية
Colonies of bacterial cells endowed with a pili-based self-propulsion machinery represent an ideal model system for studying how active adhesion forces affect structure and dynamics of many-particle systems. As a novel computational tool, we describe here a highly parallel molecular dynamics simulation package for modeling of textit{Neisseria gonorrhoeae} colonies. Simulations are employed to investigate growth of bacterial colonies and the dependence of the colony structure on cell-cell interactions. In agreement with experimental data, active pilus retraction is found to enhance local ordering. For mixed colonies consisting of different types of cell types, the simulations show a segregation of cell types depending on the pili-mediated interactions, as seen in experiments. Using a simulated experimental setup, we study the power-spectral density of colony-shape fluctuations and the associated fluctuation-response relation. The simulations predict a strong violation of the equilibrium fluctuation-response relation across the measurable frequency range. Lastly, we illustrate the essential role of active force generation for colony dynamics by showing that pilus-mediated activity drives the spreading of colonies on surfaces and the invasion of narrow channels.
Self-sustained turbulent structures have been observed in a wide range of living fluids, yet no quantitative theory exists to explain their properties. We report experiments on active turbulence in highly concentrated 3D suspensions of Bacillus subti
We study the conformational dynamics within homo-polymer globules by solvent-implicit Brownian dynamics simulations. A strong dependence of the internal chain dynamics on the Lennard-Jones cohesion strength {epsilon} and the globule size NG is observ
We provide a non-equilibrium thermodynamic description of the life-cycle of a droplet based, chemically feasible, system of protocells. By coupling the protocells metabolic kinetics with its thermodynamics, we demonstrate how the system can be driven
It is widely believed that the swimming speed, $v$, of many flagellated bacteria is a non-monotonic function of the concentration, $c$, of high-molecular-weight linear polymers in aqueous solution, showing peaked $v(c)$ curves. Pores in the polymer s
Space-saving design is a requirement that is encountered in biological systems and the development of modern technological devices alike. Many living organisms dynamically pack their polymer chains, filaments or membranes inside of deformable vesicle