ﻻ يوجد ملخص باللغة العربية
The Grover walk is one of well-studied quantum walks on graphs and its periodicity is investigated to reveal the relation between the quantum walk and the underlying graph. Especially, characterization of graphs exhibiting a periodic Grover walk is intensively studied. Yoshie has already characterized such graphs having a periodic Grover walk with periods $2, 3, 4$ and $5$. In the work, it is expected that the graphs exhibiting a periodic Grover walk with odd period are the cycles with odd length. In this paper, we address that problem and obtained the perfect answer, that is, we perfectly characterize the class of graphs exhibiting an odd-periodic Grover walk by a combinatorial method. More precisely, we solve the problem by analyzing the characteristic polynomial of a weighted adjacency matrix of the graph.
This paper explains the periodicity of the Grover walk on finite graphs. We characterize the graphs to induce 2, 3, 4, 5-periodic Grover walk and obtain a necessary condition of the graphs to induce an odd-periodic Grover walk.
We present numerical study of a model of quantum walk in periodic potential on the line. We take the simple view that different potentials affect differently the way the coin state of the walker is changed. For simplicity and definiteness, we assume
A sequential application of the Grover algorithm to solve the iterated search problem has been improved by Ozhigov by parallelizing the application of the oracle. In this work a representation of the parallel Grover as dynamic system of inversion abo
Two subjects are discussed in this work: localisation and recurrence in a model of quantum walk in a periodic potential, and a model of opinion dynamics with multiple choices of opinions.
Phase matching has been studied for the Grover algorithm as a way of enhancing the efficiency of the quantum search. Recently Li and Li found that a particular form of phase matching yields, with a single Grover operation, a success probability great