ترغب بنشر مسار تعليمي؟ اضغط هنا

CommAID: Visual Analytics for Communication Analysis through Interactive Dynamics Modeling

91   0   0.0 ( 0 )
 نشر من قبل Maximilian T. Fischer
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Communication consists of both meta-information as well as content. Currently, the automated analysis of such data often focuses either on the network aspects via social network analysis or on the content, utilizing methods from text-mining. However, the first category of approaches does not leverage the rich content information, while the latter ignores the conversation environment and the temporal evolution, as evident in the meta-information. In contradiction to communication research, which stresses the importance of a holistic approach, both aspects are rarely applied simultaneously, and consequently, their combination has not yet received enough attention in automated analysis systems. In this work, we aim to address this challenge by discussing the difficulties and design decisions of such a path as well as contribute CommAID, a blueprint for a holistic strategy to communication analysis. It features an integrated visual analytics design to analyze communication networks through dynamics modeling, semantic pattern retrieval, and a user-adaptable and problem-specific machine learning-based retrieval system. An interactive multi-level matrix-based visualization facilitates a focused analysis of both network and content using inline visuals supporting cross-checks and reducing context switches. We evaluate our approach in both a case study and through formative evaluation with eight law enforcement experts using a real-world communication corpus. Results show that our solution surpasses existing techniques in terms of integration level and applicability. With this contribution, we aim to pave the path for a more holistic approach to communication analysis.



قيم البحث

اقرأ أيضاً

The automated analysis of digital human communication data often focuses on specific aspects like content or network structure in isolation, while classical communication research stresses the importance of a holistic analysis approach. This work aim s to formalize digital communication analysis and investigate how classical results can be leveraged as part of visually interactive systems, which offers new analysis opportunities to allow for less biased, skewed, or incomplete results. For this, we construct a conceptual framework and design space based on the existing research landscape, technical considerations, and communication research that describes the properties, capabilities, and composition of such systems through 30 criteria in four analysis dimensions. We make the case how visual analytics principles are uniquely suited for a more holistic approach by tackling the automation complexity and leverage domain knowledge, paving the way to generate design guidelines for building such approaches. Our framework provides a common language and description of communication analysis systems to support existing research, highlights relevant design areas while promoting and supporting the mutual exchange between researchers. Additionally, our framework identifies existing gaps and highlights opportunities in research areas that are worth investigating further. With this contribution, we pave the path for the formalization of digital communication analysis through visual analytics.
The outbreak of coronavirus disease (COVID-19) has swept across more than 180 countries and territories since late January 2020. As a worldwide emergency response, governments have taken various measures and implemented policies, such as self-quarant ine, travel restrictions, work from home, and regional lockdown, to control the rapid spread of this epidemic. The common intention of these countermeasures is to restrict human mobility because COVID-19 is a highly contagious disease that is spread by human-to-human transmission. Medical experts and policy makers have expressed the urgency of being able to effectively evaluate the effects of human restriction policies with the aid of big data and information technology. Thus, in this study, based on big human mobility data and city POI data, we designed an interactive visual analytics system named EpiMob (Epidemic Mobility). The system interactively simulates the changes in human mobility and the number of infected people in response to the implementation of a certain restriction policy or combination of policies (e.g., regional lockdown, telecommuting, screening). Users can conveniently designate the spatial and temporal ranges for different mobility restriction policies, and the result reflecting the infection situation under different policies is dynamically displayed and can be flexibly compared. We completed multiple case studies of the largest metropolitan area in Japan (i.e., Greater Tokyo Area) and conducted interviews with domain experts to demonstrate that our system can provide illustrative insight by measuring and comparing the effects of different human mobility restriction policies for epidemic control.
Financial regulatory agencies are struggling to manage the systemic risks attributed to negative economic shocks. Preventive interventions are prominent to eliminate the risks and help to build a more resilient financial system. Although tremendous e fforts have been made to measure multi-risk severity levels, understand the contagion behaviors and other risk management problems, there still lacks a theoretical framework revealing what and how regulatory intervention measurements can mitigate systemic risk. Here we demonstrate regshock, a practical visual analytical approach to support the exploration and evaluation of financial regulation measurements. We propose risk-island, an unprecedented risk-centered visualization algorithm to help uncover the risk patterns while preserving the topology of financial networks. We further propose regshock, a novel visual exploration and assessment approach based on the simulation-intervention-evaluation analysis loop, to provide a heuristic surgical intervention capability for systemic risk mitigation. We evaluate our approach through extensive case studies and expert reviews. To our knowledge, this is the first practical systemic method for the financial network intervention and risk mitigation problem; our validated approach potentially improves the risk management and control capabilities of financial experts.
Modeling complex systems is a time-consuming, difficult and fragmented task, often requiring the analyst to work with disparate data, a variety of models, and expert knowledge across a diverse set of domains. Applying a user-centered design process, we developed a mixed-initiative visual analytics approach, a subset of the Causemos platform, that allows analysts to rapidly assemble qualitative causal models of complex socio-natural systems. Our approach facilitates the construction, exploration, and curation of qualitative models bringing together data across disparate domains. Referencing a recent user evaluation, we demonstrate our approachs ability to interactively enrich user mental models and accelerate qualitative model building.
87 - Dylan Cashman 2018
Many visual analytics systems allow users to interact with machine learning models towards the goals of data exploration and insight generation on a given dataset. However, in some situations, insights may be less important than the production of an accurate predictive model for future use. In that case, users are more interested in generating of diverse and robust predictive models, verifying their performance on holdout data, and selecting the most suitable model for their usage scenario. In this paper, we consider the concept of Exploratory Model Analysis (EMA), which is defined as the process of discovering and selecting relevant models that can be used to make predictions on a data source. We delineate the differences between EMA and the well-known term exploratory data analysis in terms of the desired outcome of the analytic process: insights into the data or a set of deployable models. The contributions of this work are a visual analytics system workflow for EMA, a user study, and two use cases validating the effectiveness of the workflow. We found that our system workflow enabled users to generate complex models, to assess them for various qualities, and to select the most relevant model for their task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا