ترغب بنشر مسار تعليمي؟ اضغط هنا

The classical two-dimensional Heisenberg model revisited: An $SU(2)$-symmetric tensor network study

91   0   0.0 ( 0 )
 نشر من قبل Philipp Schmoll
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The classical Heisenberg model in two spatial dimensions constitutes one of the most paradigmatic spin models, taking an important role in statistical and condensed matter physics to understand magnetism. Still, despite its paradigmatic character and the widely accepted ban of a (continuous) spontaneous symmetry breaking, controversies remain whether the model exhibits a phase transition at finite temperature. Importantly, the model can be interpreted as a lattice discretization of the $O(3)$ non-linear sigma model in $1+1$ dimensions, one of the simplest quantum field theories encompassing crucial features of celebrated higher-dimensional ones (like quantum chromodynamics in $3+1$ dimensions), namely the phenomenon of asymptotic freedom. This should also exclude finite-temperature transitions, but lattice effects might play a significant role in correcting the mainstream picture. In this work, we make use of state-of-the-art tensor network approaches, representing the classical partition function in the thermodynamic limit over a large range of temperatures, to comprehensively explore the correlation structure for Gibbs states. By implementing an $SU(2)$ symmetry in our two-dimensional tensor network contraction scheme, we are able to handle very large effective bond dimensions of the environment up to $chi_E^text{eff} sim 1500$, a feature that is crucial in detecting phase transitions. With decreasing temperatures, we find a rapidly diverging correlation length, whose behaviour is apparently compatible with the two main contradictory hypotheses known in the literature, namely a finite-$T$ transition and asymptotic freedom, though with a slight preference for the second.



قيم البحث

اقرأ أيضاً

By using a simulated annealing approach, Monte Carlo and molecular-dynamics techniques we have studied static and dynamic behavior of the classical two-dimensional anisotropic Heisenberg model. We have obtained numerically that the vortex developed i n such a model exhibit two different behaviors depending if the value of the anisotropy $lambda$ lies below or above a critical value $lambda_c$ . The in-plane and out-of-plane correlation functions ($S^{xx}$ and $S^{zz}$) were obtained numerically for $lambda < lambda_c$ and $lambda > lambda_c$ . We found that the out-of-plane dynamical correlation function exhibits a central peak for $lambda > lambda_c$ but not for $lambda < lambda_c$ at temperatures above $T_{BKT}$ .
133 - Ute Low 2007
The existence of Neel order in the S=1/2 Heisenberg model on the square lattice at T=0 is shown using inequalities set up by Kennedy, Lieb and Shastry in combination with high precision Quantum Monte Carlo data.
We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017)]. By encoding the truth table of each vertex constraint in a ten sor, the total number of solutions compatible with partial inputs/outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.
We study the three-dimensional Ising model at the critical point in the fixed-magnetization ensemble, by means of the recently developed geometric cluster Monte Carlo algorithm. We define a magnetic-field-like quantity in terms of microscopic spin-up and spin-down probabilities in a given configuration of neighbors. In the thermodynamic limit, the relation between this field and the magnetization reduces to the canonical relation M(h). However, for finite systems, the relation is different. We establish a close connection between this relation and the probability distribution of the magnetization of a finite-size system in the canonical ensemble.
The ground state and zero-temperature magnetization process of the spin-1/2 Ising-Heisenberg model on two-dimensional triangles-in-triangles lattices is exactly calculated using eigenstates of the smallest commuting spin clusters. Our ground-state an alysis of the investigated classical--quantum spin model reveals three unconventional dimerized or trimerized quantum ground states besides two classical ground states. It is demonstrated that the spin frustration is responsible for a variety of magnetization scenarios with up to three or four intermediate magnetization plateaus of either quantum or classical nature. The exact analytical results for the Ising-Heisenberg model are confronted with the corresponding results for the purely quantum Heisenberg model, which were obtained by numerical exact diagonalizations based on the Lanczos algorithm for finite-size spin clusters of 24 and 21 sites, respectively. It is shown that the zero-temperature magnetization process of both models is quite reminiscent and hence, one may obtain some insight into the ground states of the quantum Heisenberg model from the rigorous results for the Ising-Heisenberg model even though exact ground states for the Ising-Heisenberg model do not represent true ground states for the pure quantum Heisenberg model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا