ترغب بنشر مسار تعليمي؟ اضغط هنا

Concurrent goal-oriented materials-by-design

119   0   0.0 ( 0 )
 نشر من قبل Xingsheng Sun
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The development of new materials and structures for extreme conditions including impact remains a continuing challenge despite steady advances. Design is currently accomplished using a sequential approach: an optimal material is first developed using the process-structure-properties paradigm, where performance is measured against a blended measure. Then, the structure is optimized while holding the material properties fixed. In this paper, we propose an alternative concurrent and goal-oriented optimization approach where both the material properties and the structure are optimized simultaneously against an overall system-wide performance measure. We develop a non-intrusive, high-performance computational framework based on DAKOTA and GMSH and use it to study the ballistic impact of a double-layer plate of strong AZ31B magnesium alloy and soft polyurea. We show that the proposed concurrent and goal-oriented optimization strategy can provide significant advantage over the traditional sequential optimization approach.



قيم البحث

اقرأ أيضاً

The recent decades have seen various attempts at accelerating the process of developing materials targeted towards specific applications. The performance required for a particular application leads to the choice of a particular material system whose properties are optimized by manipulating its underlying microstructure through processing. The specific configuration of the structure is then designed by characterizing the material in detail, and using this characterization along with physical principles in system level simulations and optimization. These have been advanced by multiscale modeling of materials, high-throughput experimentations, materials data-bases, topology optimization and other ideas. Still, developing materials for extreme applications involving large deformation, high strain rates and high temperatures remains a challenge. This article reviews a number of recent methods that advance the goal of designing materials targeted by specific applications.
The knowledge of scripts, common chains of events in stereotypical scenarios, is a valuable asset for task-oriented natural language understanding systems. We propose the Goal-Oriented Script Construction task, where a model produces a sequence of st eps to accomplish a given goal. We pilot our task on the first multilingual script learning dataset supporting 18 languages collected from wikiHow, a website containing half a million how-to articles. For baselines, we consider both a generation-based approach using a language model and a retrieval-based approach by first retrieving the relevant steps from a large candidate pool and then ordering them. We show that our task is practical, feasible but challenging for state-of-the-art Transformer models, and that our methods can be readily deployed for various other datasets and domains with decent zero-shot performance.
The sensitivity of heterogeneous energetic (HE) materials (propellants, explosives, and pyrotechnics) is critically dependent on their microstructure. Initiation of chemical reactions occurs at hot spots due to energy localization at sites of porosit ies and other defects. Emerging multi-scale predictive models of HE response to loads account for the physics at the meso-scale, i.e. at the scale of statistically representative clusters of particles and other features in the microstructure. Meso-scale physics is infused in machine-learned closure models informed by resolved meso-scale simulations. Since microstructures are stochastic, ensembles of meso-scale simulations are required to quantify hot spot ignition and growth and to develop models for microstructure-dependent energy deposition rates. We propose utilizing generative adversarial networks (GAN) to spawn ensembles of synthetic heterogeneous energetic material microstructures. The method generates qualitatively and quantitatively realistic microstructures by learning from images of HE microstructures. We show that the proposed GAN method also permits the generation of new morphologies, where the porosity distribution can be controlled and spatially manipulated. Such control paves the way for the design of novel microstructures to engineer HE materials for targeted performance in a materials-by-design framework.
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments. End-to-end learning-based navigation methods struggle at this task as they are ineffective at explor ation and long-term planning. We propose a modular system called, `Goal-Oriented Semantic Exploration which builds an episodic semantic map and uses it to explore the environment efficiently based on the goal object category. Empirical results in visually realistic simulation environments show that the proposed model outperforms a wide range of baselines including end-to-end learning-based methods as well as modular map-based methods and led to the winning entry of the CVPR-2020 Habitat ObjectNav Challenge. Ablation analysis indicates that the proposed model learns semantic priors of the relative arrangement of objects in a scene, and uses them to explore efficiently. Domain-agnostic module design allow us to transfer our model to a mobile robot platform and achieve similar performance for object goal navigation in the real-world.
The experimental research on the irradiation of the functional design materials by the Helium ions in the linear accelerator is conducted. The experimental measurements techniques and data on the irradiation of the functional design materials by the Helium ions with the energy up to 4 MeV, including the detailed scheme of experimental measurements setup, are presented. The new design of accelerating structure of the IH-type such as POS-4, using the method of alternate-phase focusing with the step-by-step change of the synchronous phase along the focusing periods in a linear accelerator, is developed with the aim to irradiate the functional design materials by the Helium ions. The new design of the injector of the charged Helium ions with the energy of 120 KeV at the output of an accelerating tube and the accelerating structure of the type of POS-4 for the one time charged Helium ions acceleration in the linear accelerator are researched and developed. The special chamber for the irradiation of functional design materials by the Helium ions is also created. In the process of experiment, the temperature of a sample, the magnitude of current of Helium ions beam and the irradiation dose of sample are measured precisely. The experimental measurement setup and techniques are fully tested and optimized in the course of the research on the electro-physical properties of irradiated samples and the thermal-desorption of Helium ions in a wide range of temperatures
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا