ترغب بنشر مسار تعليمي؟ اضغط هنا

Compositional Modeling of Nonlinear Dynamical Systems with ODE-based Random Features

158   0   0.0 ( 0 )
 نشر من قبل Thomas M. McDonald
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Effectively modeling phenomena present in highly nonlinear dynamical systems whilst also accurately quantifying uncertainty is a challenging task, which often requires problem-specific techniques. We present a novel, domain-agnostic approach to tackling this problem, using compositions of physics-informed random features, derived from ordinary differential equations. The architecture of our model leverages recent advances in approximate inference for deep Gaussian processes, such as layer-wise weight-space approximations which allow us to incorporate random Fourier features, and stochastic variational inference for approximate Bayesian inference. We provide evidence that our model is capable of capturing highly nonlinear behaviour in real-world multivariate time series data. In addition, we find that our approach achieves comparable performance to a number of other probabilistic models on benchmark regression tasks.



قيم البحث

اقرأ أيضاً

In several crucial applications, domain knowledge is encoded by a system of ordinary differential equations (ODE), often stemming from underlying physical and biological processes. A motivating example is intensive care unit patients: the dynamics of vital physiological functions, such as the cardiovascular system with its associated variables (heart rate, cardiac contractility and output and vascular resistance) can be approximately described by a known system of ODEs. Typically, some of the ODE variables are directly observed (heart rate and blood pressure for example) while some are unobserved (cardiac contractility, output and vascular resistance), and in addition many other variables are observed but not modeled by the ODE, for example body temperature. Importantly, the unobserved ODE variables are known-unknowns: We know they exist and their functional dynamics, but cannot measure them directly, nor do we know the function tying them to all observed measurements. As is often the case in medicine, and specifically the cardiovascular system, estimating these known-unknowns is highly valuable and they serve as targets for therapeutic manipulations. Under this scenario we wish to learn the parameters of the ODE generating each observed time-series, and extrapolate the future of the ODE variables and the observations. We address this task with a variational autoencoder incorporating the known ODE function, called GOKU-net for Generative ODE modeling with Known Unknowns. We first validate our method on videos of single and double pendulums with unknown length or mass; we then apply it to a model of the cardiovascular system. We show that modeling the known-unknowns allows us to successfully discover clinically meaningful unobserved system parameters, leads to much better extrapolation, and enables learning using much smaller training sets.
We consider the problem of estimating a ranking on a set of items from noisy pairwise comparisons given item features. We address the fact that pairwise comparison data often reflects irrational choice, e.g. intransitivity. Our key observation is tha t two items compared in isolation from other items may be compared based on only a salient subset of features. Formalizing this framework, we propose the salient feature preference model and prove a finite sample complexity result for learning the parameters of our model and the underlying ranking with maximum likelihood estimation. We also provide empirical results that support our theoretical bounds and illustrate how our model explains systematic intransitivity. Finally we demonstrate strong performance of maximum likelihood estimation of our model on both synthetic data and two real data sets: the UT Zappos50K data set and comparison data about the compactness of legislative districts in the US.
We introduce a flexible, scalable Bayesian inference framework for nonlinear dynamical systems characterised by distinct and hierarchical variability at the individual, group, and population levels. Our model class is a generalisation of nonlinear mi xed-effects (NLME) dynamical systems, the statistical workhorse for many experimental sciences. We cast parameter inference as stochastic optimisation of an end-to-end differentiable, block-conditional variational autoencoder. We specify the dynamics of the data-generating process as an ordinary differential equation (ODE) such that both the ODE and its solver are fully differentiable. This model class is highly flexible: the ODE right-hand sides can be a mixture of user-prescribed or white-box sub-components and neural network or black-box sub-components. Using stochastic optimisation, our amortised inference algorithm could seamlessly scale up to massive data collection pipelines (common in labs with robotic automation). Finally, our framework supports interpretability with respect to the underlying dynamics, as well as predictive generalization to unseen combinations of group components (also called zero-shot learning). We empirically validate our method by predicting the dynamic behaviour of bacteria that were genetically engineered to function as biosensors. Our implementation of the framework, the dataset, and all code to reproduce the experimental results is available at https://www.github.com/Microsoft/vi-hds .
A number of machine learning tasks entail a high degree of invariance: the data distribution does not change if we act on the data with a certain group of transformations. For instance, labels of images are invariant under translations of the images. Certain neural network architectures -- for instance, convolutional networks -- are believed to owe their success to the fact that they exploit such invariance properties. With the objective of quantifying the gain achieved by invariant architectures, we introduce two classes of models: invariant random features and invariant kernel methods. The latter includes, as a special case, the neural tangent kernel for convolutional networks with global average pooling. We consider uniform covariates distributions on the sphere and hypercube and a general invariant target function. We characterize the test error of invariant methods in a high-dimensional regime in which the sample size and number of hidden units scale as polynomials in the dimension, for a class of groups that we call `degeneracy $alpha$, with $alpha leq 1$. We show that exploiting invariance in the architecture saves a $d^alpha$ factor ($d$ stands for the dimension) in sample size and number of hidden units to achieve the same test error as for unstructured architectures. Finally, we show that output symmetrization of an unstructured kernel estimator does not give a significant statistical improvement; on the other hand, data augmentation with an unstructured kernel estimator is equivalent to an invariant kernel estimator and enjoys the same improvement in statistical efficiency.
We investigate the generalisation performance of Distributed Gradient Descent with Implicit Regularisation and Random Features in the homogenous setting where a network of agents are given data sampled independently from the same unknown distribution . Along with reducing the memory footprint, Random Features are particularly convenient in this setting as they provide a common parameterisation across agents that allows to overcome previous difficulties in implementing Decentralised Kernel Regression. Under standard source and capacity assumptions, we establish high probability bounds on the predictive performance for each agent as a function of the step size, number of iterations, inverse spectral gap of the communication matrix and number of Random Features. By tuning these parameters, we obtain statistical rates that are minimax optimal with respect to the total number of samples in the network. The algorithm provides a linear improvement over single machine Gradient Descent in memory cost and, when agents hold enough data with respect to the network size and inverse spectral gap, a linear speed-up in computational runtime for any network topology. We present simulations that show how the number of Random Features, iterations and samples impact predictive performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا