ﻻ يوجد ملخص باللغة العربية
Motivated by the classic Generalized Assignment Problem, we consider the Graph Balancing problem in the presence of orientation costs: given an undirected multi-graph G = (V,E) equipped with edge weights and orientation costs on the edges, the goal is to find an orientation of the edges that minimizes both the maximum weight of edges oriented toward any vertex (makespan) and total orientation cost. We present a general framework for minimizing makespan in the presence of costs that allows us to: (1) achieve bicriteria approximations for the Graph Balancing problem that capture known previous results (Shmoys-Tardos [Math. Progrm. 93], Ebenlendr-Krcal- Sgall [Algorithmica 14], and Wang-Sitters [Inf. Process. Lett. 16]); and (2) achieve bicriteria approximations for extensions of the Graph Balancing problem that admit hyperedges and unrelated weights. Our framework is based on a remarkably simple rounding of a strengthened linear relaxation. We complement the above by presenting bicriteria lower bounds with respect to the linear programming relaxations we use that show that a loss in the total orientation cost is required if one aims for an approximation better than 2 in the makespan.
In the graph balancing problem the goal is to orient a weighted undirected graph to minimize the maximum weighted in-degree. This special case of makespan minimization is NP-hard to approximate to a factor better than 3/2 even when there are only two
Decentralized federated learning (DFL) is a powerful framework of distributed machine learning and decentralized stochastic gradient descent (SGD) is a driving engine for DFL. The performance of decentralized SGD is jointly influenced by communicatio
Set function optimization is essential in AI and machine learning. We focus on a subadditive set function that generalizes submodularity, and examine the subadditivity of non-submodular functions. We also deal with a minimax subadditive load balancin
Motivated by the use of high speed circuit switches in large scale data centers, we consider the problem of circuit switch scheduling. In this problem we are given demands between pairs of servers and the goal is to schedule at every time step a matc
We give the first polynomial-time approximation scheme (PTAS) for the stochastic load balancing problem when the job sizes follow Poisson distributions. This improves upon the 2-approximation algorithm due to Goel and Indyk (FOCS99). Moreover, our ap