ﻻ يوجد ملخص باللغة العربية
Preference-based global optimization algorithms minimize an unknown objective function only based on whether the function is better, worse, or similar for given pairs of candidate optimization vectors. Such optimization problems arise in many real-life examples, such as finding the optimal calibration of the parameters of a control law. The calibrator can judge whether a particular combination of parameters leads to a better, worse, or similar closed-loop performance. Often, the search for the optimal parameters is also subject to unknown constraints. For example, the vector of calibration parameters must not lead to closed-loop instability. This paper extends an active preference learning algorithm introduced recently by the authors to handle unknown constraints. The proposed method, called C-GLISp, looks for an optimizer of the problem only based on preferences expressed on pairs of candidate vectors, and on whether a given vector is reported feasible and/or satisfactory. C-GLISp learns a surrogate of the underlying objective function based on the expressed preferences, and a surrogate of the probability that a sample is feasible and/or satisfactory based on whether each of the tested vectors was judged as such. The surrogate functions are used to propose a new candidate vector for testing and assessment iteratively. Numerical benchmarks and a semi-automated control calibration task demonstrate the effectiveness of C-GLISp, showing that it can reach near-optimal solutions within a small number of iterations.
This paper proposes a data-driven control framework to regulate an unknown, stochastic linear dynamical system to the solution of a (stochastic) convex optimization problem. Despite the centrality of this problem, most of the available methods critic
This paper proposes a novel framework for resource-aware control design termed performance-barrier-based triggering. Given a feedback policy, along with a Lyapunov function certificate that guarantees its correctness, we examine the problem of design
Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In th
We consider optimization problems for (networked) systems, where we minimize a cost that includes a known time-varying function associated with the systems outputs and an unknown function of the inputs. We focus on a data-based online projected gradi
This paper studies an optimal consensus problem for a group of heterogeneous high-order agents with unknown control directions. Compared with existing consensus results, the consensus point is further required to an optimal solution to some distribut