ﻻ يوجد ملخص باللغة العربية
As a key technology in the 5G era, Mobile Edge Computing (MEC) has developed rapidly in recent years. MEC aims to reduce the service delay of mobile users, while alleviating the processing pressure on the core network. MEC can be regarded as an extension of cloud computing on the user side, which can deploy edge servers and bring computing resources closer to mobile users, and provide more efficient interactions. However, due to the users dynamic mobility, the distance between the user and the edge server will change dynamically, which may cause fluctuations in Quality of Service (QoS). Therefore, when a mobile user moves in the MEC environment, certain approaches are needed to schedule services deployed on the edge server to ensure the user experience. In this paper, we model service scheduling in MEC scenarios and propose a delay-aware and mobility-aware service management approach based on concise probabilistic methods. This approach has low computational complexity and can effectively reduce service delay and migration costs. Furthermore, we conduct experiments by utilizing multiple realistic datasets and use iFogSim to evaluate the performance of the algorithm. The results show that our proposed approach can optimize the performance on service delay, with 8% to 20% improvement and reduce the migration cost by more than 75% compared with baselines during the rush hours.
The development of Internet of Things (IoT) technology enables the rapid growth of connected smart devices and mobile applications. However, due to the constrained resources and limited battery capacity, there are bottlenecks when utilizing the smart
Internet of Things (IoT) is considered as the enabling platform for a variety of promising applications, such as smart transportation and smart city, where massive devices are interconnected for data collection and processing. These IoT applications
The amount of CO$_2$ emitted per kilowatt-hour on an electricity grid varies by time of day and substantially varies by location due to the types of generation. Networked collections of warehouse scale computers, sometimes called Hyperscale Computing
While mobile edge computing (MEC) alleviates the computation and power limitations of mobile devices, additional latency is incurred when offloading tasks to remote MEC servers. In this work, the power-delay tradeoff in the context of task offloading
With the advance in mobile computing, Internet of Things, and ubiquitous wireless connectivity, social sensing based edge computing (SSEC) has emerged as a new computation paradigm where people and their personally owned devices collect sensor measur