ترغب بنشر مسار تعليمي؟ اضغط هنا

Null distance and convergence of Lorentzian length spaces

230   0   0.0 ( 0 )
 نشر من قبل Roland Steinbauer
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The null distance of Sormani and Vega encodes the manifold topology as well as the causality structure of a (smooth) spacetime. We extend this concept to Lorentzian length spaces, the analog of (metric) length spaces, which generalize Lorentzian causality theory beyond the manifold level. We then study Gromov-Hausdorff convergence based on the null distance in warped product Lorentzian length spaces and prove first results on its compatibility with synthetic curvature bounds.



قيم البحث

اقرأ أيضاً

We introduce an analogue of the theory of length spaces into the setting of Lorentzian geometry and causality theory. The r^ole of the metric is taken over by the time separation function, in terms of which all basic notions are formulated. In this w ay we recover many fundamental results in greater generality, while at the same time clarifying the minimal requirements for and the interdependence of the basic building blocks of the theory. A main focus of this work is the introduction of synthetic curvature bounds, akin to the theory of Alexandrov and CAT$(k)$-spaces, based on triangle comparison. Applications include Lorentzian manifolds with metrics of low regularity, closed cone structures, and certain approaches to quantum gravity.
131 - Adam Rennie , Ben E. Whale 2014
We show that finiteness of the Lorentzian distance is equivalent to the existence of generalised time functions with gradient uniformly bounded away from light cones. To derive this result we introduce new techniques to construct and manipulate achro nal sets. As a consequence of these techniques we obtain a functional description of the Lorentzian distance extending the work of Franco and Moretti.
Lorentzian manifolds with parallel spinors are important objects of study in several branches of geometry, analysis and mathematical physics. Their Cauchy problem has recently been discussed by Baum, Leistner and Lischewski, who proved that the probl em locally has a unique solution up to diffeomorphisms, provided that the intial data given on a space-like hypersurface satisfy some constraint equations. In this article we provide a method to solve these constraint equations. In particular, any curve (resp. closed curve) in the moduli space of Riemannian metrics on $M$ with a parallel spinor gives rise to a solution of the constraint equations on $Mtimes (a,b)$ (resp. $Mtimes S^1$).
In this paper we develop the notion of screen isoparametric hypersurface for null hypersurfaces of Robertson-Walker spacetimes. Using this formalism we derive Cartan identities for the screen principal curvatures of null screen hypersurfaces in Loren tzian space forms and provide a local characterization of such hypersurfaces.
180 - Maciej Dunajski 2020
We construct the normal forms of null-Kahler metrics: pseudo-Riemannian metrics admitting a compatible parallel nilpotent endomorphism of the tangent bundle. Such metrics are examples of non-Riemannian holonomy reduction, and (in the complexified set ting) appear in the Bridgeland stability conditions of the moduli spaces of Calabi-Yau three-folds. Using twistor methods we show that, in dimension four - where there is a connection with dispersionless integrability - the cohomogeneity-one anti-self-dual null-Kahler metrics are generically characterised by solutions to Painleve I or Painleve II ODEs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا