ﻻ يوجد ملخص باللغة العربية
Exotic phases of matter emerge from the interplay between strong electron interactions and non-trivial topology. Owing to their lack of dispersion at the single-particle level, systems harboring flat bands are excellent testbeds for strongly interacting physics, with twisted bilayer graphene serving as a prime example. On the other hand, existing theoretical models for obtaining flat bands in crystalline materials, such as the line-graph formalism, are often too restrictive for real-life material realizations. Here we present a generic technique for constructing perfectly flat bands from bipartite crystalline lattices. Our prescription encapsulates and generalizes the various flat band models in the literature, being applicable to systems with any orbital content, with or without spin-orbit coupling. Using Topological Quantum Chemistry, we build a complete topological classification in terms of symmetry eigenvalues of all the gapped and gapless flat bands, for all 1651 Magnetic Space Groups. In addition, we derive criteria for the existence of symmetry-protected band touching points between the flat and dispersive bands, and we identify the gapped flat bands as prime candidates for fragile topological phases. Finally, we show that the set of all (gapped and gapless) perfectly flat bands is finitely generated and construct the corresponding bases for all 1651 Shubnikov Space Groups.
In this work, we develop a systematic method of constructing flat-band models with and without band crossings. Our construction scheme utilizes the symmetry and spatial shape of a compact localized state (CLS) and also the singularity of the flat-ban
Topological flat bands, such as the band in twisted bilayer graphene, are becoming a promising platform to study topics such as correlation physics, superconductivity, and transport. In this work, we introduce a generic approach to construct two-dime
On the basis of the molecular-orbital representation which describes generic flat-band models, we propose a systematic way to construct a class of flat-band models with finite-range hoppings that have topological natures. In these models, the topolog
Starting with twisted bilayer graphene, graphene-based moire materials have recently been established as a new platform for studying strong electron correlations. In this paper, we study twisted graphene monolayers on trilayer graphene and demonstrat
Over the last 100 years, the group-theoretic characterization of crystalline solids has provided the foundational language for diverse problems in physics and chemistry. There exist two classes of crystalline solids: nonmagnetic crystals left invaria