ﻻ يوجد ملخص باللغة العربية
We prove that there exists an absolute constant $delta>0$ such any binary code $Csubset{0,1}^N$ tolerating $(1/2-delta)N$ adversarial deletions must satisfy $|C|le 2^{text{poly}log N}$ and thus have rate asymptotically approaching 0. This is the first constant fraction improvement over the trivial bound that codes tolerating $N/2$ adversarial deletions must have rate going to 0 asymptotically. Equivalently, we show that there exists absolute constants $A$ and $delta>0$ such that any set $Csubset{0,1}^N$ of $2^{log^A N}$ binary strings must contain two strings $c$ and $c$ whose longest common subsequence has length at least $(1/2+delta)N$. As an immediate corollary, we show that $q$-ary codes tolerating a fraction $1-(1+2delta)/q$ of adversarial deletions must also have rate approaching 0. Our techniques include string regularity arguments and a structural lemma that classifies binary strings by their oscillation patterns. Leveraging these tools, we find in any large code two strings with similar oscillation patterns, which is exploited to find a long common subsequence.
In [5] Graham and Rothschild consider a geometric Ramsey problem: finding the least n such that if all edges of the complete graph on the points {+1,-1}^n are 2-colored, there exist 4 coplanar points such that the 6 edges between them are monochromat
Suppose that $mathcal{P}$ is a property that may be satisfied by a random code $C subset Sigma^n$. For example, for some $p in (0,1)$, $mathcal{P}$ might be the property that there exist three elements of $C$ that lie in some Hamming ball of radius $
Electromagnetism (E&M) is often challenging for students enrolled in introductory college-level physics courses. Compared to mechanics, the mathematics of E&M is more sophisticated and the representations are more abstract. Furthermore, students may
In this paper, the construction of finite-length binary sequences whose nonlinear complexity is not less than half of the length is investigated. By characterizing the structure of the sequences, an algorithm is proposed to generate all binary sequen
We study the magnetic excitations on top of the plateaux states recently discovered in spin-Peierls systems in a magnetic field. We show by means of extensive density matrix renormalization group (DMRG) computations and an analytic approach that one