ﻻ يوجد ملخص باللغة العربية
In this work, a new approach is presented with the aim of showing a simple way of unifying the classical formulas for the forces of the Coulombs law of electrostatic interaction ($F_C$) and the Newtons law of universal gravitation $(F_G)$. In this approach, these two forces are of the same nature and are ascribed to the interaction between two membranes that oscillate according to different curvature functions with the same spatial period $xipi/k$ where $xi$ is a dimensionless parameter and $k$ a wave number. Both curvature functions are solutions of the classical wave equation with wavelength given by the de Broglie relation. This new formula still keeps itself as the inverse square law, and it is like $F_C$ when the dimensionless parameter $xi =274$ and like $F_G$ when $xi = 1.14198$x$10^{45}$. It was found that the values of the parameter $xi$ quantize the formula from which $F_C$ and $F_G$ are obtained as particular cases.
Recent cosmological data for very large distances challenge the validity of the standard cosmological model. Motivated by the observed spatial flatness the accelerating expansion and the various anisotropies with preferred axes in the universe we exa
We present a new approach to quantum gravity starting from Feynmans formulation for the simplest example, that of a scalar field as the representative matter. We show that we extend his treatment to a calculable framework using resummation techniques
Misinterpretations of Newtons second law for variable mass systems found in the literature are addressed. In particular, it is shown that Newtons second law in the form $vec{F} = dot{vec{p}}$ is valid for variable mass systems in general, contrary to
Under certain conditions usually fulfilled in classical mechanics, the principle of conservation of linear momentum and Newtons third law are equivalent. However, the demonstration of this fact is usually incomplete in textbooks. We shall show here t
Newtons Law of Gravitation has been tested at small values of the acceleration, down to a=10^{-10} m/s^2, the approximate value of MONDs constant a_0. No deviations were found.