ترغب بنشر مسار تعليمي؟ اضغط هنا

Neighborhood Contrastive Learning Applied to Online Patient Monitoring

183   0   0.0 ( 0 )
 نشر من قبل Hugo Yeche
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Intensive care units (ICU) are increasingly looking towards machine learning for methods to provide online monitoring of critically ill patients. In machine learning, online monitoring is often formulated as a supervised learning problem. Recently, contrastive learning approaches have demonstrated promising improvements over competitive supervised benchmarks. These methods rely on well-understood data augmentation techniques developed for image data which do not apply to online monitoring. In this work, we overcome this limitation by supplementing time-series data augmentation techniques with a novel contrastive learning objective which we call neighborhood contrastive learning (NCL). Our objective explicitly groups together contiguous time segments from each patient while maintaining state-specific information. Our experiments demonstrate a marked improvement over existing work applying contrastive methods to medical time-series.



قيم البحث

اقرأ أيضاً

In object re-identification (ReID), the development of deep learning techniques often involves model updates and deployment. It is unbearable to re-embedding and re-index with the system suspended when deploying new models. Therefore, backward-compat ible representation is proposed to enable new features to be compared with old features directly, which means that the database is active when there are both new and old features in it. Thus we can scroll-refresh the database or even do nothing on the database to update. The existing backward-compatible methods either require a strong overlap between old and new training data or simply conduct constraints at the instance level. Thus they are difficult in handling complicated cluster structures and are limited in eliminating the impact of outliers in old embeddings, resulting in a risk of damaging the discriminative capability of new features. In this work, we propose a Neighborhood Consensus Contrastive Learning (NCCL) method. With no assumptions about the new training data, we estimate the sub-cluster structures of old embeddings. A new embedding is constrained with multiple old embeddings in both embedding space and discrimination space at the sub-class level. The effect of outliers diminished, as the multiple samples serve as mean teachers. Besides, we also propose a scheme to filter the old embeddings with low credibility, further improving the compatibility robustness. Our method ensures backward compatibility without impairing the accuracy of the new model. And it can even improve the new models accuracy in most scenarios.
Contrastive learning is one of the fastest growing research areas in machine learning due to its ability to learn useful representations without labeled data. However, contrastive learning is susceptible to shortcuts - i.e., it may learn shortcut fea tures irrelevant to the task of interest, and discard relevant information. Past work has addressed this limitation via handcrafted data augmentations that eliminate the shortcut. But, manually crafted augmentations do not work across all datasets and tasks. Further, data augmentations fail in addressing shortcuts in multi-attribute classification when one attribute acts as a shortcut around other attributes. In this paper, we analyze the objective function of contrastive learning and formally prove that it is vulnerable to shortcuts. We then present reconstructive contrastive learning (RCL), a framework for learning unsupervised representations that are robust to shortcuts. The key idea is to force the learned representation to reconstruct the input, which naturally counters potential shortcuts. Extensive experiments verify that RCL is highly robust to shortcuts and outperforms state-of-the-art contrastive learning methods on a variety of datasets and tasks.
69 - Kangfu Mei , Yao Lu , Qiaosi Yi 2020
Pursuing realistic results according to human visual perception is the central concern in the image transformation tasks. Perceptual learning approaches like perceptual loss are empirically powerful for such tasks but they usually rely on the pre-tra ined classification network to provide features, which are not necessarily optimal in terms of visual perception of image transformation. In this paper, we argue that, among the features representation from the pre-trained classification network, only limited dimensions are related to human visual perception, while others are irrelevant, although both will affect the final image transformation results. Under such an assumption, we try to disentangle the perception-relevant dimensions from the representation through our proposed online contrastive learning. The resulted network includes the pre-training part and a feature selection layer, followed by the contrastive learning module, which utilizes the transformed results, target images, and task-oriented distorted images as the positive, negative, and anchor samples, respectively. The contrastive learning aims at activating the perception-relevant dimensions and suppressing the irrelevant ones by using the triplet loss, so that the original representation can be disentangled for better perceptual quality. Experiments on various image transformation tasks demonstrate the superiority of our framework, in terms of human visual perception, to the existing approaches using pre-trained networks and empirically designed losses.
Online learning is a powerful tool for analyzing iterative algorithms. However, the classic adversarial setup sometimes fails to capture certain regularity in online problems in practice. Motivated by this, we establish a new setup, called Continuous Online Learning (COL), where the gradient of online loss function changes continuously across rounds with respect to the learners decisions. We show that COL covers and more appropriately describes many interesting applications, from general equilibrium problems (EPs) to optimization in episodic MDPs. Using this new setup, we revisit the difficulty of achieving sublinear dynamic regret. We prove that there is a fundamental equivalence between achieving sublinear dynamic regret in COL and solving certain EPs, and we present a reduction from dynamic regret to both static regret and convergence rate of the associated EP. At the end, we specialize these new insights into online imitation learning and show improved understanding of its learning stability.
We propose a self-supervised approach for learning representations of objects from monocular videos and demonstrate it is particularly useful in situated settings such as robotics. The main contributions of this paper are: 1) a self-supervising objec tive trained with contrastive learning that can discover and disentangle object attributes from video without using any labels; 2) we leverage object self-supervision for online adaptation: the longer our online model looks at objects in a video, the lower the object identification error, while the offline baseline remains with a large fixed error; 3) to explore the possibilities of a system entirely free of human supervision, we let a robot collect its own data, train on this data with our self-supervise scheme, and then show the robot can point to objects similar to the one presented in front of it, demonstrating generalization of object attributes. An interesting and perhaps surprising finding of this approach is that given a limited set of objects, object correspondences will naturally emerge when using contrastive learning without requiring explicit positive pairs. Videos illustrating online object adaptation and robotic pointing are available at: https://online-objects.github.io/.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا