ترغب بنشر مسار تعليمي؟ اضغط هنا

Concavity of minimal $L^2$ integrals related to multipler ideal sheaves

52   0   0.0 ( 0 )
 نشر من قبل Qi'an Guan
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note, we present the concavity of the minimal $L^2$ integrals related to multiplier ideals sheaves on Stein manifolds. As applications, we obtain a necessary condition for the concavity degenerating to linearity, a characterization for 1-dimensional case, and a characterization for the equality in 1-dimensional optimal $L^{2}$ extension problem to hold.



قيم البحث

اقرأ أيضاً

47 - Qian Guan 2018
In this note, we present a general version of the concavity of the minimal $L^{2}$ integrals related to multiplier ideal sheaves.
57 - Qian Guan , Xiangyu Zhou 2017
In this note, we reveal that our solution of Demaillys strong openness conjecture implies a matrix version of the conjecture; our solutions of two conjectures of Demailly-Koll{a}r and Jonsson-Mustatu{a} implies the truth of twist
Chen proposed a conjecture on the log-concavity of the generating function for the symmetric group with respect to the length of longest increasing subsequences of permutations. Motivated by Chens log-concavity conjecture, B{o}na, Lackner and Sagan f urther studied similar problems by restricting the whole symmetric group to certain of its subsets. They obtained the log-concavity of the corresponding generating functions for these subsets by using the hook-length formula. In this paper, we generalize and prove their results by establishing the Schur positivity of certain symmetric functions. This also enables us to propose a new approach to Chens original conjecture.
83 - Qian Guan 2018
In this note, we answer a question on the extension of $L^{2}$ holomorphic functions posed by Ohsawa.
This paper is devoted to $L^2$ estimates for trilinear oscillatory integrals of convolution type on $mathbb{R}^2$. The phases in the oscillatory factors include smooth functions and polynomials. We shall establish sharp $L^2$ decay estimates of trili near oscillatory integrals with smooth phases, and then give $L^2$ uniform estimates for these integrals with polynomial phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا