ﻻ يوجد ملخص باللغة العربية
In this note, we present the concavity of the minimal $L^2$ integrals related to multiplier ideals sheaves on Stein manifolds. As applications, we obtain a necessary condition for the concavity degenerating to linearity, a characterization for 1-dimensional case, and a characterization for the equality in 1-dimensional optimal $L^{2}$ extension problem to hold.
In this note, we present a general version of the concavity of the minimal $L^{2}$ integrals related to multiplier ideal sheaves.
In this note, we reveal that our solution of Demaillys strong openness conjecture implies a matrix version of the conjecture; our solutions of two conjectures of Demailly-Koll{a}r and Jonsson-Mustatu{a} implies the truth of twist
Chen proposed a conjecture on the log-concavity of the generating function for the symmetric group with respect to the length of longest increasing subsequences of permutations. Motivated by Chens log-concavity conjecture, B{o}na, Lackner and Sagan f
In this note, we answer a question on the extension of $L^{2}$ holomorphic functions posed by Ohsawa.
This paper is devoted to $L^2$ estimates for trilinear oscillatory integrals of convolution type on $mathbb{R}^2$. The phases in the oscillatory factors include smooth functions and polynomials. We shall establish sharp $L^2$ decay estimates of trili