Hunting isolated neutron stars with proper motions from wide-area optical surveys


الملخص بالإنكليزية

High-velocity neutron stars (HVNSs) that were kicked out from their birth location can be potentially identified with their large proper motions, and possibly with large parallax, when they come across the solar neighborhood. In this paper, we study the feasibility of hunting isolated HVNSs in wide-area optical surveys by modeling the evolution of NS luminosity taking into account spin-down and thermal radiation. Assuming the upcoming 10-year VRO LSST observation, our model calculations predict that about 10 HVNSs mainly consisting of pulsars with ages of $10^4$--$10^5$ yr and thermally emitting NSs with $10^5$--$10^6$ yr are detectable. We find that a few NSs with effective temperature $< 5 times 10^5$ K, which are likely missed in the current and future X-ray surveys, are also detectable. In addition to the standard neutron star cooling models, we consider a dark matter heating model. If such a strong heating exists we find that the detectable HVNSs would be significantly cooler, i.e., $lesssim 5times 10^5$ K. Thus, the future optical observation will give an unique NS sample, which can provide essential constraints on the NS cooling and heating mechanisms. Moreover, we suggest that providing HVNS samples with optical surveys is helpful for understanding the intrinsic kick-velocity distribution of NSs.

تحميل البحث