ترغب بنشر مسار تعليمي؟ اضغط هنا

Making Better Use of Bilingual Information for Cross-Lingual AMR Parsing

81   0   0.0 ( 0 )
 نشر من قبل Yitao Cai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Abstract Meaning Representation (AMR) is a rooted, labeled, acyclic graph representing the semantics of natural language. As previous works show, although AMR is designed for English at first, it can also represent semantics in other languages. However, they find that concepts in their predicted AMR graphs are less specific. We argue that the misprediction of concepts is due to the high relevance between English tokens and AMR concepts. In this work, we introduce bilingual input, namely the translated texts as well as non-English texts, in order to enable the model to predict more accurate concepts. Besides, we also introduce an auxiliary task, requiring the decoder to predict the English sequences at the same time. The auxiliary task can help the decoder understand what exactly the corresponding English tokens are. Our proposed cross-lingual AMR parser surpasses previous state-of-the-art parser by 10.6 points on Smatch F1 score. The ablation study also demonstrates the efficacy of our proposed modules.



قيم البحث

اقرأ أيضاً

Multilingual pre-trained models have achieved remarkable transfer performance by pre-trained on rich kinds of languages. Most of the models such as mBERT are pre-trained on unlabeled corpora. The static and contextual embeddings from the models could not be aligned very well. In this paper, we aim to improve the zero-shot cross-lingual transfer performance by aligning the embeddings better. We propose a pre-training task named Alignment Language Model (AlignLM), which uses the statistical alignment information as the prior knowledge to guide bilingual word prediction. We evaluate our method on multilingual machine reading comprehension and natural language interface tasks. The results show AlignLM can improve the zero-shot performance significantly on MLQA and XNLI datasets.
223 - Yanyan Zou , Wei Lu 2018
With the development of several multilingual datasets used for semantic parsing, recent research efforts have looked into the problem of learning semantic parsers in a multilingual setup. However, how to improve the performance of a monolingual seman tic parser for a specific language by leveraging data annotated in different languages remains a research question that is under-explored. In this work, we present a study to show how learning distributed representations of the logical forms from data annotated in different languages can be used for improving the performance of a monolingual semantic parser. We extend two existing monolingual semantic parsers to incorporate such cross-lingual distributed logical representations as features. Experiments show that our proposed approach is able to yield improved semantic parsing results on the standard multilingual GeoQuery dataset.
Task-oriented compositional semantic parsing (TCSP) handles complex nested user queries and serves as an essential component of virtual assistants. Current TCSP models rely on numerous training data to achieve decent performance but fail to generaliz e to low-resource target languages or domains. In this paper, we present X2Parser, a transferable Cross-lingual and Cross-domain Parser for TCSP. Unlike previous models that learn to generate the hierarchical representations for nested intents and slots, we propose to predict flattened intents and slots representations separately and cast both prediction tasks into sequence labeling problems. After that, we further propose a fertility-based slot predictor that first learns to dynamically detect the number of labels for each token, and then predicts the slot types. Experimental results illustrate that our model can significantly outperform existing strong baselines in cross-lingual and cross-domain settings, and our model can also achieve a good generalization ability on target languages of target domains. Furthermore, our model tackles the problem in an efficient non-autoregressive way that reduces the latency by up to 66% compared to the generative model.
94 - Haoran Xu , Philipp Koehn 2021
Linear embedding transformation has been shown to be effective for zero-shot cross-lingual transfer tasks and achieve surprisingly promising results. However, cross-lingual embedding space mapping is usually studied in static word-level embeddings, w here a space transformation is derived by aligning representations of translation pairs that are referred from dictionaries. We move further from this line and investigate a contextual embedding alignment approach which is sense-level and dictionary-free. To enhance the quality of the mapping, we also provide a deep view of properties of contextual embeddings, i.e., anisotropy problem and its solution. Experiments on zero-shot dependency parsing through the concept-shared space built by our embedding transformation substantially outperform state-of-the-art methods using multilingual embeddings.
115 - Kailai Sun , Zuchao Li , Hai Zhao 2020
Syntactic parsing is a highly linguistic processing task whose parser requires training on treebanks from the expensive human annotation. As it is unlikely to obtain a treebank for every human language, in this work, we propose an effective cross-lin gual UD parsing framework for transferring parser from only one source monolingual treebank to any other target languages without treebank available. To reach satisfactory parsing accuracy among quite different languages, we introduce two language modeling tasks into dependency parsing as multi-tasking. Assuming only unlabeled data from target languages plus the source treebank can be exploited together, we adopt a self-training strategy for further performance improvement in terms of our multi-task framework. Our proposed cross-lingual parsers are implemented for English, Chinese, and 22 UD treebanks. The empirical study shows that our cross-lingual parsers yield promising results for all target languages, for the first time, approaching the parser performance which is trained in its own target treebank.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا