ﻻ يوجد ملخص باللغة العربية
We generalize Nakajima-Yoshiokas blowup formula to calculate the partition functions counting the spectrum of bound states to half-BPS Wilson loop operators in 5d (and 6d) supersymmetric field theories. The partition function in the presence of a Wilson loop operator on the $Omega$-background is factorized when put on the blowup $hat{mathbb{C}}^2$ into two Wilson loop partition functions under the localization. This structure provides a set of blowup equations for Wilson loop operators. We explain how to formulate the blowup equations and solve them to compute the partition functions of Wilson loop operators. We test this idea by explicitly calculating the Wilson loop partition functions in various 5d/6d field theories and comparing them against known results and expected dualities.
We construct novel web diagrams with a trivalent or quadrivalent gluing for various 6d/5d theories from certain Higgsings of 6d conformal matter theories on a circle. The theories realized on the web diagrams include 5d Kaluza-Klein theories from cir
We propose new five-dimensional gauge theory descriptions of six-dimensional $mathcal{N}=(1,0)$ superconformal field theories arising from type IIA brane configurations including an $ON^0$-plane. The new five-dimensional gauge theories may have $SO$,
There is substantial evidence that string theory on AdS_5 x S_5 is a holographic theory in which the number of degrees of freedom scales as the area of the boundary in Planck units. Precisely how the theory can describe bulk physics using only surfac
We study Feynman integrals and scattering amplitudes in ${cal N}=4$ super-Yang-Mills by exploiting the duality with null polygonal Wilson loops. Certain Feynman integrals, including one-loop and two-loop chiral pentagons, are given by Feynman diagram
We propose a systematic approach to computing the BPS spectra of any 5d/6d supersymmetric quantum field theory in Coulomb phases, which admits either gauge theory descriptions or geometric descriptions, based on the Nakajima-Yoshiokas blowup equation